Source code for pinecone.inference.inference

import logging
import warnings
from typing import Optional, Dict, List, Union, Any, TYPE_CHECKING

from pinecone.openapi_support import ApiClient
from pinecone.core.openapi.inference.apis import InferenceApi
from .models import EmbeddingsList, RerankResult
from pinecone.core.openapi.inference import API_VERSION
from pinecone.utils import setup_openapi_client, PluginAware
from pinecone.utils import require_kwargs

from .inference_request_builder import (
    InferenceRequestBuilder,
    EmbedModel as EmbedModelEnum,
    RerankModel as RerankModelEnum,
)

if TYPE_CHECKING:
    from pinecone.config import Config, OpenApiConfiguration
    from .resources.sync.model import Model as ModelResource
    from .models import ModelInfo, ModelInfoList

logger = logging.getLogger(__name__)
""" :meta private: """


class Inference(PluginAware):
    """
    The ``Inference`` class configures and uses the Pinecone Inference API to generate embeddings and
    rank documents.

    It is generally not instantiated directly, but rather accessed through a parent ``Pinecone`` client
    object that is responsible for managing shared configurations.

    .. code-block:: python

        from pinecone import Pinecone

        pc = Pinecone()
        embeddings = pc.inference.embed(
            model="text-embedding-3-small",
            inputs=["Hello, world!"],
            parameters={"input_type": "passage", "truncate": "END"}
        )


    :param config: A ``pinecone.config.Config`` object, configured and built in the ``Pinecone`` class.
    :type config: ``pinecone.config.Config``, required
    """

    EmbedModel = EmbedModelEnum
    RerankModel = RerankModelEnum

    def __init__(
        self,
        config: "Config",
        openapi_config: "OpenApiConfiguration",
        pool_threads: int = 1,
        **kwargs,
    ) -> None:
        self._config = config
        """ :meta private: """

        self._openapi_config = openapi_config
        """ :meta private: """

        self._pool_threads = pool_threads
        """ :meta private: """

        self.__inference_api = setup_openapi_client(
            api_client_klass=ApiClient,
            api_klass=InferenceApi,
            config=config,
            openapi_config=openapi_config,
            pool_threads=self._pool_threads,
            api_version=API_VERSION,
        )

        self._model: Optional["ModelResource"] = None  # Lazy initialization
        """ :meta private: """

        super().__init__()  # Initialize PluginAware

    @property
    def config(self) -> "Config":
        """:meta private:"""
        # The config property is considered private, but the name cannot be changed to include underscore
        # without breaking compatibility with plugins in the wild.
        return self._config

    @property
    def openapi_config(self) -> "OpenApiConfiguration":
        """:meta private:"""
        warnings.warn(
            "The `openapi_config` property has been renamed to `_openapi_config`. It is considered private and should not be used directly. This warning will become an error in a future version of the Pinecone Python SDK.",
            DeprecationWarning,
            stacklevel=2,
        )
        return self._openapi_config

    @property
    def pool_threads(self) -> int:
        """:meta private:"""
        warnings.warn(
            "The `pool_threads` property has been renamed to `_pool_threads`. It is considered private and should not be used directly. This warning will become an error in a future version of the Pinecone Python SDK.",
            DeprecationWarning,
            stacklevel=2,
        )
        return self._pool_threads

    @property
    def model(self) -> "ModelResource":
        """
        Model is a resource that describes models available in the Pinecone Inference API.

        Curently you can get or list models.

        .. code-block:: python
            pc = Pinecone()

            # List all models
            models = pc.inference.model.list()

            # List models, with model type filtering
            models = pc.inference.model.list(type="embed")
            models = pc.inference.model.list(type="rerank")

            # List models, with vector type filtering
            models = pc.inference.model.list(vector_type="dense")
            models = pc.inference.model.list(vector_type="sparse")

            # List models, with both type and vector type filtering
            models = pc.inference.model.list(type="rerank", vector_type="dense")

            # Get details on a specific model
            model = pc.inference.model.get("text-embedding-3-small")

        """
        if self._model is None:
            from .resources.sync.model import Model as ModelResource

            self._model = ModelResource(
                inference_api=self.__inference_api,
                config=self._config,
                openapi_config=self._openapi_config,
                pool_threads=self._pool_threads,
            )
        return self._model

[docs] def embed( self, model: Union[EmbedModelEnum, str], inputs: Union[str, List[Dict], List[str]], parameters: Optional[Dict[str, Any]] = None, ) -> EmbeddingsList: """ Generates embeddings for the provided inputs using the specified model and (optional) parameters. :param model: The model to use for generating embeddings. :type model: str, required :param inputs: A list of items to generate embeddings for. :type inputs: list, required :param parameters: A dictionary of parameters to use when generating embeddings. :type parameters: dict, optional :return: ``EmbeddingsList`` object with keys ``data``, ``model``, and ``usage``. The ``data`` key contains a list of ``n`` embeddings, where ``n`` = len(inputs). Precision of returned embeddings is either float16 or float32, with float32 being the default. ``model`` key is the model used to generate the embeddings. ``usage`` key contains the total number of tokens used at request-time. Example: .. code-block:: python >>> pc = Pinecone() >>> inputs = ["Who created the first computer?"] >>> outputs = pc.inference.embed(model="multilingual-e5-large", inputs=inputs, parameters={"input_type": "passage", "truncate": "END"}) >>> print(outputs) EmbeddingsList( model='multilingual-e5-large', data=[ {'values': [0.1, ...., 0.2]}, ], usage={'total_tokens': 6} ) """ request_body = InferenceRequestBuilder.embed_request( model=model, inputs=inputs, parameters=parameters ) resp = self.__inference_api.embed(embed_request=request_body) return EmbeddingsList(resp)
[docs] def rerank( self, model: Union[RerankModelEnum, str], query: str, documents: Union[List[str], List[Dict[str, Any]]], rank_fields: List[str] = ["text"], return_documents: bool = True, top_n: Optional[int] = None, parameters: Optional[Dict[str, Any]] = None, ) -> RerankResult: """ Rerank documents with associated relevance scores that represent the relevance of each document to the provided query using the specified model. :param model: The model to use for reranking. :type model: str, required :param query: The query to compare with documents. :type query: str, required :param documents: A list of documents or strings to rank. :type documents: list, required :param rank_fields: A list of document fields to use for ranking. Defaults to ["text"]. :type rank_fields: list, optional :param return_documents: Whether to include the documents in the response. Defaults to True. :type return_documents: bool, optional :param top_n: How many documents to return. Defaults to len(documents). :type top_n: int, optional :param parameters: A dictionary of parameters to use when ranking documents. :type parameters: dict, optional :return: ``RerankResult`` object with keys ``data`` and ``usage``. The ``data`` key contains a list of ``n`` documents, where ``n`` = ``top_n`` and type(n) = Document. The documents are sorted in order of relevance, with the first being the most relevant. The ``index`` field can be used to locate the document relative to the list of documents specified in the request. Each document contains a ``score`` key representing how close the document relates to the query. Example: .. code-block:: python >>> pc = Pinecone() >>> pc.inference.rerank( model="bge-reranker-v2-m3", query="Tell me about tech companies", documents=[ "Apple is a popular fruit known for its sweetness and crisp texture.", "Software is still eating the world.", "Many people enjoy eating apples as a healthy snack.", "Acme Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.", "An apple a day keeps the doctor away, as the saying goes.", ], top_n=2, return_documents=True, ) RerankResult( model='bge-reranker-v2-m3', data=[{ index=3, score=0.020924192, document={ text='Acme Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.' } },{ index=1, score=0.00034464317, document={ text='Software is still eating the world.' } }], usage={'rerank_units': 1} ) """ rerank_request = InferenceRequestBuilder.rerank( model=model, query=query, documents=documents, rank_fields=rank_fields, return_documents=return_documents, top_n=top_n, parameters=parameters, ) resp = self.__inference_api.rerank(rerank_request=rerank_request) return RerankResult(resp)
[docs] @require_kwargs def list_models( self, *, type: Optional[str] = None, vector_type: Optional[str] = None ) -> "ModelInfoList": """ List all available models. :param type: The type of model to list. Either "embed" or "rerank". :type type: str, optional :param vector_type: The type of vector to list. Either "dense" or "sparse". :type vector_type: str, optional :return: A list of models. Example: .. code-block:: python pc = Pinecone() # List all models models = pc.inference.list_models() # List models, with model type filtering models = pc.inference.list_models(type="embed") models = pc.inference.list_models(type="rerank") # List models, with vector type filtering models = pc.inference.list_models(vector_type="dense") models = pc.inference.list_models(vector_type="sparse") # List models, with both type and vector type filtering models = pc.inference.list_models(type="rerank", vector_type="dense") """ return self.model.list(type=type, vector_type=vector_type)
[docs] @require_kwargs def get_model(self, model_name: str) -> "ModelInfo": """ Get details on a specific model. :param model_name: The name of the model to get details on. :type model_name: str, required :return: A ModelInfo object. .. code-block:: python >>> pc = Pinecone() >>> pc.inference.get_model(model_name="pinecone-rerank-v0") { "model": "pinecone-rerank-v0", "short_description": "A state of the art reranking model that out-performs competitors on widely accepted benchmarks. It can handle chunks up to 512 tokens (1-2 paragraphs)", "type": "rerank", "supported_parameters": [ { "parameter": "truncate", "type": "one_of", "value_type": "string", "required": false, "default": "END", "allowed_values": [ "END", "NONE" ] } ], "modality": "text", "max_sequence_length": 512, "max_batch_size": 100, "provider_name": "Pinecone", "supported_metrics": [] } """ return self.model.get(model_name=model_name)