pinecone.data.dataclasses.search_query

 1from dataclasses import dataclass
 2from typing import Optional, Any, Dict, Union
 3from .search_query_vector import SearchQueryVector
 4from ..types.search_query_vector_typed_dict import SearchQueryVectorTypedDict
 5
 6
 7@dataclass
 8class SearchQuery:
 9    """
10    SearchQuery represents the query when searching within a specific namespace.
11    """
12
13    inputs: Dict[str, Any]
14    """
15    The input data to search with.
16    Required.
17    """
18
19    top_k: int
20    """
21    The number of results to return with each search.
22    Required.
23    """
24
25    filter: Optional[Dict[str, Any]] = None
26    """
27    The filter to apply to the search.
28    Optional.
29    """
30
31    vector: Optional[Union[SearchQueryVectorTypedDict, SearchQueryVector]] = None
32    """
33    The vector values to search with. If provided, it overwrites the inputs.
34    """
35
36    id: Optional[str] = None
37    """
38    The unique ID of the vector to be used as a query vector.
39    """
40
41    def __post_init__(self):
42        """
43        Converts `vector` to a `SearchQueryVectorTypedDict` instance if an enum is provided.
44        """
45        if isinstance(self.vector, SearchQueryVector):
46            self.vector = self.vector.as_dict()
47
48    def as_dict(self) -> Dict[str, Any]:
49        """
50        Returns the SearchQuery as a dictionary.
51        """
52        d = {
53            "inputs": self.inputs,
54            "top_k": self.top_k,
55            "filter": self.filter,
56            "vector": self.vector,
57            "id": self.id,
58        }
59        return {k: v for k, v in d.items() if v is not None}
@dataclass
class SearchQuery:
 8@dataclass
 9class SearchQuery:
10    """
11    SearchQuery represents the query when searching within a specific namespace.
12    """
13
14    inputs: Dict[str, Any]
15    """
16    The input data to search with.
17    Required.
18    """
19
20    top_k: int
21    """
22    The number of results to return with each search.
23    Required.
24    """
25
26    filter: Optional[Dict[str, Any]] = None
27    """
28    The filter to apply to the search.
29    Optional.
30    """
31
32    vector: Optional[Union[SearchQueryVectorTypedDict, SearchQueryVector]] = None
33    """
34    The vector values to search with. If provided, it overwrites the inputs.
35    """
36
37    id: Optional[str] = None
38    """
39    The unique ID of the vector to be used as a query vector.
40    """
41
42    def __post_init__(self):
43        """
44        Converts `vector` to a `SearchQueryVectorTypedDict` instance if an enum is provided.
45        """
46        if isinstance(self.vector, SearchQueryVector):
47            self.vector = self.vector.as_dict()
48
49    def as_dict(self) -> Dict[str, Any]:
50        """
51        Returns the SearchQuery as a dictionary.
52        """
53        d = {
54            "inputs": self.inputs,
55            "top_k": self.top_k,
56            "filter": self.filter,
57            "vector": self.vector,
58            "id": self.id,
59        }
60        return {k: v for k, v in d.items() if v is not None}

SearchQuery represents the query when searching within a specific namespace.

SearchQuery( inputs: Dict[str, Any], top_k: int, filter: Optional[Dict[str, Any]] = None, vector: Union[pinecone.data.types.search_query_vector_typed_dict.SearchQueryVectorTypedDict, pinecone.data.dataclasses.search_query_vector.SearchQueryVector, NoneType] = None, id: Optional[str] = None)
inputs: Dict[str, Any]

The input data to search with. Required.

top_k: int

The number of results to return with each search. Required.

filter: Optional[Dict[str, Any]] = None

The filter to apply to the search. Optional.

The vector values to search with. If provided, it overwrites the inputs.

id: Optional[str] = None

The unique ID of the vector to be used as a query vector.

def as_dict(self) -> Dict[str, Any]:
49    def as_dict(self) -> Dict[str, Any]:
50        """
51        Returns the SearchQuery as a dictionary.
52        """
53        d = {
54            "inputs": self.inputs,
55            "top_k": self.top_k,
56            "filter": self.filter,
57            "vector": self.vector,
58            "id": self.id,
59        }
60        return {k: v for k, v in d.items() if v is not None}

Returns the SearchQuery as a dictionary.