pinecone .control .pinecone_interface
1from abc import ABC, abstractmethod 2 3from typing import Optional, Dict, Union 4 5 6from pinecone.models import ( 7 ServerlessSpec, 8 PodSpec, 9 IndexList, 10 CollectionList, 11 IndexModel, 12 IndexEmbed, 13) 14from pinecone.enums import ( 15 Metric, 16 VectorType, 17 DeletionProtection, 18 PodType, 19 CloudProvider, 20 AwsRegion, 21 GcpRegion, 22 AzureRegion, 23) 24from .types import CreateIndexForModelEmbedTypedDict 25 26 27class PineconeDBControlInterface(ABC): 28 @abstractmethod 29 def __init__( 30 self, 31 api_key: Optional[str] = None, 32 host: Optional[str] = None, 33 proxy_url: Optional[str] = None, 34 proxy_headers: Optional[Dict[str, str]] = None, 35 ssl_ca_certs: Optional[str] = None, 36 ssl_verify: Optional[bool] = None, 37 additional_headers: Optional[Dict[str, str]] = {}, 38 pool_threads: Optional[int] = 1, 39 **kwargs, 40 ): 41 """ 42 The `Pinecone` class is the main entry point for interacting with Pinecone via this Python SDK. 43 Instances of the `Pinecone` class are used to create, delete, and manage your indexes and collections. The class also holds inference functionality (embed, rerank) under the `inference` namespace. 44 Methods which create or modify index and collection resources result in network calls to https://api.pinecone.io. 45 46 When you are ready to perform data operations on an index, you will need to instantiate an index client. Though the functionality of the index client is defined in a different 47 class, it is instantiated through the `Index()` method in order for configurations to be shared between the two objects. 48 49 :param api_key: The API key to use for authentication. If not passed via kwarg, the API key will be read from the environment variable `PINECONE_API_KEY`. 50 :type api_key: str, optional 51 :param host: The control plane host. If unspecified, the host `api.pinecone.io` will be used. 52 :type host: str, optional 53 :param proxy_url: The URL of the proxy to use for the connection. 54 :type proxy_url: str, optional 55 :param proxy_headers: Additional headers to pass to the proxy. Use this if your proxy setup requires authentication. 56 :type proxy_headers: Dict[str, str], optional 57 :param ssl_ca_certs: The path to the SSL CA certificate bundle to use for the connection. This path should point to a file in PEM format. When not passed, the SDK will use the certificate bundle returned from `certifi.where()`. 58 :type ssl_ca_certs: str, optional 59 :param ssl_verify: SSL verification is performed by default, but can be disabled using the boolean flag when testing with Pinecone Local or troubleshooting a proxy setup. You should never run with SSL verification disabled in production. 60 :type ssl_verify: bool, optional 61 :param additional_headers: Additional headers to pass to the API. This is mainly to support internal testing at Pinecone. End users should not need to use this unless following specific instructions to do so. 62 :type additional_headers: Dict[str, str], optional 63 :param pool_threads: The number of threads to use for the ThreadPool when using methods that support the `async_req` keyword argument. The default number of threads is 5 * the number of CPUs in your execution environment. 64 :type pool_threads: int, optional 65 66 ### Configuration with environment variables 67 68 If you instantiate the Pinecone client with no arguments, it will attempt to read the API key from the environment variable `PINECONE_API_KEY`. 69 70 ```python 71 from pinecone import Pinecone 72 73 pc = Pinecone() 74 ``` 75 76 ### Configuration with keyword arguments 77 78 If you prefer being more explicit in your code, you can also pass the API key as a keyword argument. This is also where you will pass additional configuration options such as proxy settings if you wish to use those. 79 80 ```python 81 import os 82 from pinecone import Pinecone 83 84 pc = Pinecone( 85 api_key=os.environ.get("PINECONE_API_KEY"), 86 host="https://api-staging.pinecone.io" 87 ) 88 ``` 89 90 ### Environment variables 91 92 The Pinecone client supports the following environment variables: 93 94 - `PINECONE_API_KEY`: The API key to use for authentication. If not passed via 95 kwarg, the API key will be read from the environment variable `PINECONE_API_KEY`. 96 97 - `PINECONE_DEBUG_CURL`: When troubleshooting it can be very useful to run curl 98 commands against the control plane API to see exactly what data is being sent 99 and received without all the abstractions and transformations applied by the Python 100 SDK. If you set this environment variable to `true`, the Pinecone client will use 101 request parameters to print out an equivalent curl command that you can run yourself 102 or share with Pinecone support. **Be very careful with this option, as it will print out 103 your API key** which forms part of a required authentication header. The main use of 104 is to help evaluate whether a problem you are experiencing is due to the API's behavior 105 or the behavior of the SDK itself. 106 107 ### Proxy configuration 108 109 If your network setup requires you to interact with Pinecone via a proxy, you will need 110 to pass additional configuration using optional keyword parameters. These optional parameters 111 are forwarded to `urllib3`, which is the underlying library currently used by the Pinecone client to 112 make HTTP requests. You may find it helpful to refer to the 113 [urllib3 documentation on working with proxies](https://urllib3.readthedocs.io/en/stable/advanced-usage.html#http-and-https-proxies) 114 while troubleshooting these settings. 115 116 Here is a basic example: 117 118 ```python 119 from pinecone import Pinecone 120 121 pc = Pinecone( 122 api_key='YOUR_API_KEY', 123 proxy_url='https://your-proxy.com' 124 ) 125 126 pc.list_indexes() 127 ``` 128 129 If your proxy requires authentication, you can pass those values in a header dictionary using the `proxy_headers` parameter. 130 131 ```python 132 from pinecone import Pinecone 133 import urllib3 import make_headers 134 135 pc = Pinecone( 136 api_key='YOUR_API_KEY', 137 proxy_url='https://your-proxy.com', 138 proxy_headers=make_headers(proxy_basic_auth='username:password') 139 ) 140 141 pc.list_indexes() 142 ``` 143 144 ### Using proxies with self-signed certificates 145 146 By default the Pinecone Python client will perform SSL certificate verification 147 using the CA bundle maintained by Mozilla in the [certifi](https://pypi.org/project/certifi/) package. 148 If your proxy server is using a self-signed certificate, you will need to pass the path to the certificate 149 in PEM format using the `ssl_ca_certs` parameter. 150 151 ```python 152 from pinecone import Pinecone 153 import urllib3 import make_headers 154 155 pc = Pinecone( 156 api_key='YOUR_API_KEY', 157 proxy_url='https://your-proxy.com', 158 proxy_headers=make_headers(proxy_basic_auth='username:password'), 159 ssl_ca_certs='path/to/cert-bundle.pem' 160 ) 161 162 pc.list_indexes() 163 ``` 164 165 ### Disabling SSL verification 166 167 If you would like to disable SSL verification, you can pass the `ssl_verify` 168 parameter with a value of `False`. We do not recommend going to production with SSL verification disabled. 169 170 ```python 171 from pinecone import Pinecone 172 import urllib3 import make_headers 173 174 pc = Pinecone( 175 api_key='YOUR_API_KEY', 176 proxy_url='https://your-proxy.com', 177 proxy_headers=make_headers(proxy_basic_auth='username:password'), 178 ssl_ca_certs='path/to/cert-bundle.pem', 179 ssl_verify=False 180 ) 181 182 pc.list_indexes() 183 184 ``` 185 """ 186 187 pass 188 189 @abstractmethod 190 def create_index( 191 self, 192 name: str, 193 spec: Union[Dict, ServerlessSpec, PodSpec], 194 dimension: Optional[int], 195 metric: Optional[Union[Metric, str]] = Metric.COSINE, 196 timeout: Optional[int] = None, 197 deletion_protection: Optional[Union[DeletionProtection, str]] = DeletionProtection.DISABLED, 198 vector_type: Optional[Union[VectorType, str]] = VectorType.DENSE, 199 tags: Optional[Dict[str, str]] = None, 200 ) -> IndexModel: 201 """Creates a Pinecone index. 202 203 :param name: The name of the index to create. Must be unique within your project and 204 cannot be changed once created. Allowed characters are lowercase letters, numbers, 205 and hyphens and the name may not begin or end with hyphens. Maximum length is 45 characters. 206 :type name: str 207 :param metric: Type of similarity metric used in the vector index when querying, one of `{"cosine", "dotproduct", "euclidean"}`. 208 :type metric: str, optional 209 :param spec: A dictionary containing configurations describing how the index should be deployed. For serverless indexes, 210 specify region and cloud. For pod indexes, specify replicas, shards, pods, pod_type, metadata_config, and source_collection. 211 Alternatively, use the `ServerlessSpec` or `PodSpec` objects to specify these configurations. 212 :type spec: Dict 213 :param dimension: If you are creating an index with `vector_type="dense"` (which is the default), you need to specify `dimension` to indicate the size of your vectors. 214 This should match the dimension of the embeddings you will be inserting. For example, if you are using 215 OpenAI's CLIP model, you should use `dimension=1536`. Dimension is a required field when 216 creating an index with `vector_type="dense"` and should not be passed when `vector_type="sparse"`. 217 :type dimension: int 218 :type timeout: int, optional 219 :param timeout: Specify the number of seconds to wait until index gets ready. If None, wait indefinitely; if >=0, time out after this many seconds; 220 if -1, return immediately and do not wait. 221 :param deletion_protection: If enabled, the index cannot be deleted. If disabled, the index can be deleted. 222 :type deletion_protection: Optional[Literal["enabled", "disabled"]] 223 :param vector_type: The type of vectors to be stored in the index. One of `{"dense", "sparse"}`. 224 :type vector_type: str, optional 225 :param tags: Tags are key-value pairs you can attach to indexes to better understand, organize, and identify your resources. Some example use cases include tagging indexes with the name of the model that generated the embeddings, the date the index was created, or the purpose of the index. 226 :type tags: Optional[Dict[str, str]] 227 :return: A `IndexModel` instance containing a description of the index that was created. 228 229 ### Creating a serverless index 230 231 ```python 232 import os 233 from pinecone import ( 234 Pinecone, 235 ServerlessSpec, 236 CloudProvider, 237 AwsRegion, 238 Metric, 239 DeletionProtection, 240 VectorType 241 ) 242 243 pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY")) 244 245 pc.create_index( 246 name="my_index", 247 dimension=1536, 248 metric=Metric.COSINE, 249 spec=ServerlessSpec( 250 cloud=CloudProvider.AWS, 251 region=AwsRegion.US_WEST_2 252 ), 253 deletion_protection=DeletionProtection.DISABLED, 254 vector_type=VectorType.DENSE, 255 tags={ 256 "model": "clip", 257 "app": "image-search", 258 "env": "testing" 259 } 260 ) 261 ``` 262 263 ### Creating a pod index 264 265 ```python 266 import os 267 from pinecone import ( 268 Pinecone, 269 PodSpec, 270 PodIndexEnvironment, 271 PodType, 272 Metric, 273 DeletionProtection, 274 VectorType 275 ) 276 277 pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY")) 278 279 pc.create_index( 280 name="my_index", 281 dimension=1536, 282 metric=Metric.COSINE, 283 spec=PodSpec( 284 environment=PodIndexEnvironment.US_EAST4_GCP, 285 pod_type=PodType.P1_X1 286 ), 287 deletion_protection=DeletionProtection.DISABLED, 288 tags={ 289 "model": "clip", 290 "app": "image-search", 291 "env": "testing" 292 } 293 ) 294 ``` 295 """ 296 pass 297 298 @abstractmethod 299 def create_index_for_model( 300 self, 301 name: str, 302 cloud: Union[CloudProvider, str], 303 region: Union[AwsRegion, GcpRegion, AzureRegion, str], 304 embed: Union[IndexEmbed, CreateIndexForModelEmbedTypedDict], 305 tags: Optional[Dict[str, str]] = None, 306 deletion_protection: Optional[Union[DeletionProtection, str]] = DeletionProtection.DISABLED, 307 timeout: Optional[int] = None, 308 ) -> IndexModel: 309 """ 310 :param name: The name of the index to create. Must be unique within your project and 311 cannot be changed once created. Allowed characters are lowercase letters, numbers, 312 and hyphens and the name may not begin or end with hyphens. Maximum length is 45 characters. 313 :type name: str 314 :param cloud: The cloud provider to use for the index. One of `{"aws", "gcp", "azure"}`. 315 :type cloud: str 316 :param region: The region to use for the index. Enum objects `AwsRegion`, `GcpRegion`, and `AzureRegion` are also available to help you quickly set these parameters, but may not be up to date as new regions become available. 317 :type region: str 318 :param embed: The embedding configuration for the index. This param accepts a dictionary or an instance of the `IndexEmbed` object. 319 :type embed: Union[Dict, IndexEmbed] 320 :param tags: Tags are key-value pairs you can attach to indexes to better understand, organize, and identify your resources. Some example use cases include tagging indexes with the name of the model that generated the embeddings, the date the index was created, or the purpose of the index. 321 :type tags: Optional[Dict[str, str]] 322 :param deletion_protection: If enabled, the index cannot be deleted. If disabled, the index can be deleted. This setting can be changed with `configure_index`. 323 :type deletion_protection: Optional[Literal["enabled", "disabled"]] 324 :type timeout: Optional[int] 325 :param timeout: Specify the number of seconds to wait until index is ready to receive data. If None, wait indefinitely; if >=0, time out after this many seconds; 326 if -1, return immediately and do not wait. 327 :return: A description of the index that was created. 328 :rtype: IndexModel 329 330 This method is used to create a Serverless index that is configured for use with Pinecone's integrated inference models. 331 332 The resulting index can be described, listed, configured, and deleted like any other Pinecone index with the `describe_index`, `list_indexes`, `configure_index`, and `delete_index` methods. 333 334 After the model is created, you can upsert records into the index with the `upsert_records` method, and search your records with the `search` method. 335 336 ```python 337 from pinecone import ( 338 Pinecone, 339 IndexEmbed, 340 CloudProvider, 341 AwsRegion, 342 EmbedModel, 343 Metric, 344 ) 345 346 pc = Pinecone() 347 348 if not pc.has_index("book-search"): 349 desc = await pc.create_index_for_model( 350 name="book-search", 351 cloud=CloudProvider.AWS, 352 region=AwsRegion.US_EAST_1, 353 embed=IndexEmbed( 354 model=EmbedModel.Multilingual_E5_Large, 355 metric=Metric.COSINE, 356 field_map={ 357 "text": "description", 358 }, 359 ) 360 ) 361 ``` 362 363 To see the available cloud regions, see this [Pinecone documentation](https://docs.pinecone.io/troubleshooting/available-cloud-regions) page. 364 365 See the [Model Gallery](https://docs.pinecone.io/models/overview) to learn about available models. 366 """ 367 pass 368 369 @abstractmethod 370 def delete_index(self, name: str, timeout: Optional[int] = None): 371 """ 372 :param name: the name of the index. 373 :type name: str 374 :param timeout: Number of seconds to poll status checking whether the index has been deleted. If None, 375 wait indefinitely; if >=0, time out after this many seconds; 376 if -1, return immediately and do not wait. 377 :type timeout: int, optional 378 379 Deletes a Pinecone index. 380 381 Deleting an index is an irreversible operation. All data in the index will be lost. 382 When you use this command, a request is sent to the Pinecone control plane to delete 383 the index, but the termination is not synchronous because resources take a few moments to 384 be released. 385 386 By default the `delete_index` method will block until polling of the `describe_index` method 387 shows that the delete operation has completed. If you prefer to return immediately and not 388 wait for the index to be deleted, you can pass `timeout=-1` to the method. 389 390 After the delete request is submitted, polling `describe_index` will show that the index 391 transitions into a `Terminating` state before eventually resulting in a 404 after it has been removed. 392 393 This operation can fail if the index is configured with `deletion_protection="enabled"`. 394 In this case, you will need to call `configure_index` to disable deletion protection before 395 you can delete the index. 396 397 ```python 398 from pinecone import Pinecone 399 400 pc = Pinecone() 401 402 index_name = "my_index" 403 desc = pc.describe_index(name=index_name) 404 405 if desc.deletion_protection == "enabled": 406 # If for some reason deletion protection is enabled, you will need to disable it first 407 # before you can delete the index. But use caution as this operation is not reversible 408 # and if somebody enabled deletion protection, they probably had a good reason. 409 pc.configure_index(name=index_name, deletion_protection="disabled") 410 411 pc.delete_index(name=index_name) 412 ``` 413 """ 414 pass 415 416 @abstractmethod 417 def list_indexes(self) -> IndexList: 418 """ 419 :return: Returns an `IndexList` object, which is iterable and contains a 420 list of `IndexModel` objects. The `IndexList` also has a convenience method `names()` 421 which returns a list of index names for situations where you just want to iterate over 422 all index names. 423 424 Lists all indexes in your project. 425 426 The results include a description of all indexes in your project, including the 427 index name, dimension, metric, status, and spec. 428 429 If you simply want to check whether an index exists, see the `has_index()` convenience method. 430 431 You can use the `list_indexes()` method to iterate over descriptions of every index in your project. 432 433 ```python 434 from pinecone import Pinecone 435 436 pc = Pinecone() 437 438 for index in pc.list_indexes(): 439 print(index.name) 440 print(index.dimension) 441 print(index.metric) 442 print(index.status) 443 print(index.host) 444 print(index.spec) 445 ``` 446 """ 447 pass 448 449 @abstractmethod 450 def describe_index(self, name: str) -> IndexModel: 451 """ 452 :param name: the name of the index to describe. 453 :return: Returns an `IndexModel` object 454 which gives access to properties such as the 455 index name, dimension, metric, host url, status, 456 and spec. 457 458 Describes a Pinecone index. 459 460 ### Getting your index host url 461 462 In a real production situation, you probably want to 463 store the host url in an environment variable so you 464 don't have to call describe_index and re-fetch it 465 every time you want to use the index. But this example 466 shows how to get the value from the API using describe_index. 467 468 ```python 469 from pinecone import Pinecone, Index 470 471 pc = Pinecone() 472 473 index_name="my_index" 474 description = pc.describe_index(name=index_name) 475 print(description) 476 # { 477 # "name": "my_index", 478 # "metric": "cosine", 479 # "host": "my_index-dojoi3u.svc.aped-4627-b74a.pinecone.io", 480 # "spec": { 481 # "serverless": { 482 # "cloud": "aws", 483 # "region": "us-east-1" 484 # } 485 # }, 486 # "status": { 487 # "ready": true, 488 # "state": "Ready" 489 # }, 490 # "vector_type": "dense", 491 # "dimension": 1024, 492 # "deletion_protection": "enabled", 493 # "tags": { 494 # "environment": "production" 495 # } 496 # } 497 498 print(f"Your index is hosted at {description.host}") 499 500 index = pc.Index(host=description.host) 501 index.upsert(vectors=[...]) 502 ``` 503 """ 504 pass 505 506 @abstractmethod 507 def has_index(self, name: str) -> bool: 508 """ 509 :param name: The name of the index to check for existence. 510 :return: Returns `True` if the index exists, `False` otherwise. 511 512 Checks if a Pinecone index exists. 513 514 ```python 515 from pinecone import Pinecone, ServerlessSpec 516 517 pc = Pinecone() 518 519 index_name = "my_index" 520 if not pc.has_index(index_name): 521 print("Index does not exist, creating...") 522 pc.create_index( 523 name=index_name, 524 dimension=768, 525 metric="cosine", 526 spec=ServerlessSpec(cloud="aws", region="us-west-2") 527 ) 528 ``` 529 """ 530 pass 531 532 @abstractmethod 533 def configure_index( 534 self, 535 name: str, 536 replicas: Optional[int] = None, 537 pod_type: Optional[Union[PodType, str]] = None, 538 deletion_protection: Optional[Union[DeletionProtection, str]] = None, 539 tags: Optional[Dict[str, str]] = None, 540 ): 541 """ 542 :param: name: the name of the Index 543 :param: replicas: the desired number of replicas, lowest value is 0. 544 :param: pod_type: the new pod_type for the index. To learn more about the 545 available pod types, please see [Understanding Indexes](https://docs.pinecone.io/docs/indexes) 546 :param: deletion_protection: If set to 'enabled', the index cannot be deleted. If 'disabled', the index can be deleted. 547 :param: tags: A dictionary of tags to apply to the index. Tags are key-value pairs that can be used to organize and manage indexes. To remove a tag, set the value to "". Tags passed to configure_index will be merged with existing tags and any with the value empty string will be removed. 548 549 This method is used to modify an index's configuration. It can be used to: 550 551 - Scale a pod-based index horizontally using `replicas` 552 - Scale a pod-based index vertically using `pod_type` 553 - Enable or disable deletion protection using `deletion_protection` 554 - Add, change, or remove tags using `tags` 555 556 ## Scaling pod-based indexes 557 558 To scale your pod-based index, you pass a `replicas` and/or `pod_type` param to the `configure_index` method. `pod_type` may be a string or a value from the `PodType` enum. 559 560 ```python 561 from pinecone import Pinecone, PodType 562 563 pc = Pinecone() 564 pc.configure_index( 565 name="my_index", 566 replicas=2, 567 pod_type=PodType.P1_X2 568 ) 569 ``` 570 571 After providing these new configurations, you must call `describe_index` to see the status of the index as the changes are applied. 572 573 ## Enabling or disabling deletion protection 574 575 To enable or disable deletion protection, pass the `deletion_protection` parameter to the `configure_index` method. When deletion protection 576 is enabled, the index cannot be deleted with the `delete_index` method. 577 578 ```python 579 from pinecone import Pinecone, DeletionProtection 580 581 pc = Pinecone() 582 583 # Enable deletion protection 584 pc.configure_index( 585 name="my_index", 586 deletion_protection=DeletionProtection.ENABLED 587 ) 588 589 # Call describe_index to see the change was applied. 590 assert pc.describe_index("my_index").deletion_protection == "enabled" 591 592 # Disable deletion protection 593 pc.configure_index( 594 name="my_index", 595 deletion_protection=DeletionProtection.DISABLED 596 ) 597 ``` 598 599 ## Adding, changing, or removing tags 600 601 To add, change, or remove tags, pass the `tags` parameter to the `configure_index` method. When tags are passed using `configure_index`, 602 they are merged with any existing tags already on the index. To remove a tag, set the value of the key to an empty string. 603 604 ```python 605 from pinecone import Pinecone 606 607 pc = Pinecone() 608 609 # Add a tag 610 pc.configure_index(name="my_index", tags={"environment": "staging"}) 611 612 # Change a tag 613 pc.configure_index(name="my_index", tags={"environment": "production"}) 614 615 # Remove a tag 616 pc.configure_index(name="my_index", tags={"environment": ""}) 617 618 # Call describe_index to view the tags are changed 619 print(pc.describe_index("my_index").tags) 620 ``` 621 """ 622 pass 623 624 @abstractmethod 625 def create_collection(self, name: str, source: str): 626 """Create a collection from a pod-based index 627 628 :param name: Name of the collection 629 :param source: Name of the source index 630 """ 631 pass 632 633 @abstractmethod 634 def list_collections(self) -> CollectionList: 635 """List all collections 636 637 ```python 638 from pinecone import Pinecone 639 640 pc = Pinecone() 641 642 for collection in pc.list_collections(): 643 print(collection.name) 644 print(collection.source) 645 646 # You can also iterate specifically over the collection 647 # names with the .names() helper. 648 collection_name="my_collection" 649 for collection_name in pc.list_collections().names(): 650 print(collection_name) 651 ``` 652 """ 653 pass 654 655 @abstractmethod 656 def delete_collection(self, name: str) -> None: 657 """ 658 :param name: The name of the collection to delete. 659 660 Deletes a collection. 661 662 Deleting a collection is an irreversible operation. All data 663 in the collection will be lost. 664 665 This method tells Pinecone you would like to delete a collection, 666 but it takes a few moments to complete the operation. Use the 667 `describe_collection()` method to confirm that the collection 668 has been deleted. 669 670 ```python 671 from pinecone import Pinecone 672 673 pc = Pinecone() 674 675 pc.delete_collection(name="my_collection") 676 ``` 677 """ 678 pass 679 680 @abstractmethod 681 def describe_collection(self, name: str): 682 """Describes a collection. 683 :param: The name of the collection 684 :return: Description of the collection 685 686 ```python 687 from pinecone import Pinecone 688 689 pc = Pinecone() 690 691 description = pc.describe_collection("my_collection") 692 print(description.name) 693 print(description.source) 694 print(description.status) 695 print(description.size) 696 ``` 697 """ 698 pass 699 700 @abstractmethod 701 def Index(self, name: str = "", host: str = "", **kwargs): 702 """ 703 :param name: The name of the index to target. If you specify the name of the index, the client will 704 fetch the host url from the Pinecone control plane. 705 :param host: The host url of the index to target. If you specify the host url, the client will use 706 the host url directly without making any additional calls to the control plane. 707 :param pool_threads: The number of threads to use when making parallel requests by calling index methods with optional kwarg async_req=True, or using methods that make use of thread-based parallelism automatically such as query_namespaces(). 708 :param connection_pool_maxsize: The maximum number of connections to keep in the connection pool. 709 :return: An instance of the `Index` class. 710 711 Target an index for data operations. 712 713 ### Target an index by host url 714 715 In production situations, you want to uspert or query your data as quickly 716 as possible. If you know in advance the host url of your index, you can 717 eliminate a round trip to the Pinecone control plane by specifying the 718 host of the index. If instead you pass the name of the index, the client 719 will need to make an additional call to api.pinecone.io to get the host url 720 before any data operations can take place. 721 722 ```python 723 import os 724 from pinecone import Pinecone 725 726 api_key = os.environ.get("PINECONE_API_KEY") 727 index_host = os.environ.get("PINECONE_INDEX_HOST") 728 729 pc = Pinecone(api_key=api_key) 730 index = pc.Index(host=index_host) 731 732 # Now you're ready to perform data operations 733 index.query(vector=[...], top_k=10) 734 ``` 735 736 To find your host url, you can use the describe_index method to call api.pinecone.io. 737 The host url is returned in the response. Or, alternatively, the 738 host is displayed in the Pinecone web console. 739 740 ```python 741 import os 742 from pinecone import Pinecone 743 744 pc = Pinecone( 745 api_key=os.environ.get("PINECONE_API_KEY") 746 ) 747 748 host = pc.describe_index('index-name').host 749 ``` 750 751 ### Target an index by name (not recommended for production) 752 753 For more casual usage, such as when you are playing and exploring with Pinecone 754 in a notebook setting, you can also target an index by name. If you use this 755 approach, the client may need to perform an extra call to the Pinecone control 756 plane to get the host url on your behalf to get the index host. 757 758 The client will cache the index host for future use whenever it is seen, so you 759 will only incur the overhead of only one call. But this approach is not 760 recommended for production usage because it introduces an unnecessary runtime 761 dependency on api.pinecone.io. 762 763 ```python 764 import os 765 from pinecone import Pinecone, ServerlessSpec 766 767 api_key = os.environ.get("PINECONE_API_KEY") 768 769 pc = Pinecone(api_key=api_key) 770 pc.create_index( 771 name='my_index', 772 dimension=1536, 773 metric='cosine', 774 spec=ServerlessSpec(cloud='aws', region='us-west-2') 775 ) 776 index = pc.Index('my_index') 777 778 # Now you're ready to perform data operations 779 index.query(vector=[...], top_k=10) 780 ``` 781 """ 782 pass 783 784 def IndexAsyncio(self, host: str, **kwargs): 785 """Build an asyncio-compatible Index object. 786 787 :param host: The host url of the index to target. You can find this url in the Pinecone 788 web console or by calling describe_index method of `Pinecone` or `PineconeAsyncio`. 789 790 :return: An instance of the `IndexAsyncio` class. 791 """ 792 pass
28class PineconeDBControlInterface(ABC): 29 @abstractmethod 30 def __init__( 31 self, 32 api_key: Optional[str] = None, 33 host: Optional[str] = None, 34 proxy_url: Optional[str] = None, 35 proxy_headers: Optional[Dict[str, str]] = None, 36 ssl_ca_certs: Optional[str] = None, 37 ssl_verify: Optional[bool] = None, 38 additional_headers: Optional[Dict[str, str]] = {}, 39 pool_threads: Optional[int] = 1, 40 **kwargs, 41 ): 42 """ 43 The `Pinecone` class is the main entry point for interacting with Pinecone via this Python SDK. 44 Instances of the `Pinecone` class are used to create, delete, and manage your indexes and collections. The class also holds inference functionality (embed, rerank) under the `inference` namespace. 45 Methods which create or modify index and collection resources result in network calls to https://api.pinecone.io. 46 47 When you are ready to perform data operations on an index, you will need to instantiate an index client. Though the functionality of the index client is defined in a different 48 class, it is instantiated through the `Index()` method in order for configurations to be shared between the two objects. 49 50 :param api_key: The API key to use for authentication. If not passed via kwarg, the API key will be read from the environment variable `PINECONE_API_KEY`. 51 :type api_key: str, optional 52 :param host: The control plane host. If unspecified, the host `api.pinecone.io` will be used. 53 :type host: str, optional 54 :param proxy_url: The URL of the proxy to use for the connection. 55 :type proxy_url: str, optional 56 :param proxy_headers: Additional headers to pass to the proxy. Use this if your proxy setup requires authentication. 57 :type proxy_headers: Dict[str, str], optional 58 :param ssl_ca_certs: The path to the SSL CA certificate bundle to use for the connection. This path should point to a file in PEM format. When not passed, the SDK will use the certificate bundle returned from `certifi.where()`. 59 :type ssl_ca_certs: str, optional 60 :param ssl_verify: SSL verification is performed by default, but can be disabled using the boolean flag when testing with Pinecone Local or troubleshooting a proxy setup. You should never run with SSL verification disabled in production. 61 :type ssl_verify: bool, optional 62 :param additional_headers: Additional headers to pass to the API. This is mainly to support internal testing at Pinecone. End users should not need to use this unless following specific instructions to do so. 63 :type additional_headers: Dict[str, str], optional 64 :param pool_threads: The number of threads to use for the ThreadPool when using methods that support the `async_req` keyword argument. The default number of threads is 5 * the number of CPUs in your execution environment. 65 :type pool_threads: int, optional 66 67 ### Configuration with environment variables 68 69 If you instantiate the Pinecone client with no arguments, it will attempt to read the API key from the environment variable `PINECONE_API_KEY`. 70 71 ```python 72 from pinecone import Pinecone 73 74 pc = Pinecone() 75 ``` 76 77 ### Configuration with keyword arguments 78 79 If you prefer being more explicit in your code, you can also pass the API key as a keyword argument. This is also where you will pass additional configuration options such as proxy settings if you wish to use those. 80 81 ```python 82 import os 83 from pinecone import Pinecone 84 85 pc = Pinecone( 86 api_key=os.environ.get("PINECONE_API_KEY"), 87 host="https://api-staging.pinecone.io" 88 ) 89 ``` 90 91 ### Environment variables 92 93 The Pinecone client supports the following environment variables: 94 95 - `PINECONE_API_KEY`: The API key to use for authentication. If not passed via 96 kwarg, the API key will be read from the environment variable `PINECONE_API_KEY`. 97 98 - `PINECONE_DEBUG_CURL`: When troubleshooting it can be very useful to run curl 99 commands against the control plane API to see exactly what data is being sent 100 and received without all the abstractions and transformations applied by the Python 101 SDK. If you set this environment variable to `true`, the Pinecone client will use 102 request parameters to print out an equivalent curl command that you can run yourself 103 or share with Pinecone support. **Be very careful with this option, as it will print out 104 your API key** which forms part of a required authentication header. The main use of 105 is to help evaluate whether a problem you are experiencing is due to the API's behavior 106 or the behavior of the SDK itself. 107 108 ### Proxy configuration 109 110 If your network setup requires you to interact with Pinecone via a proxy, you will need 111 to pass additional configuration using optional keyword parameters. These optional parameters 112 are forwarded to `urllib3`, which is the underlying library currently used by the Pinecone client to 113 make HTTP requests. You may find it helpful to refer to the 114 [urllib3 documentation on working with proxies](https://urllib3.readthedocs.io/en/stable/advanced-usage.html#http-and-https-proxies) 115 while troubleshooting these settings. 116 117 Here is a basic example: 118 119 ```python 120 from pinecone import Pinecone 121 122 pc = Pinecone( 123 api_key='YOUR_API_KEY', 124 proxy_url='https://your-proxy.com' 125 ) 126 127 pc.list_indexes() 128 ``` 129 130 If your proxy requires authentication, you can pass those values in a header dictionary using the `proxy_headers` parameter. 131 132 ```python 133 from pinecone import Pinecone 134 import urllib3 import make_headers 135 136 pc = Pinecone( 137 api_key='YOUR_API_KEY', 138 proxy_url='https://your-proxy.com', 139 proxy_headers=make_headers(proxy_basic_auth='username:password') 140 ) 141 142 pc.list_indexes() 143 ``` 144 145 ### Using proxies with self-signed certificates 146 147 By default the Pinecone Python client will perform SSL certificate verification 148 using the CA bundle maintained by Mozilla in the [certifi](https://pypi.org/project/certifi/) package. 149 If your proxy server is using a self-signed certificate, you will need to pass the path to the certificate 150 in PEM format using the `ssl_ca_certs` parameter. 151 152 ```python 153 from pinecone import Pinecone 154 import urllib3 import make_headers 155 156 pc = Pinecone( 157 api_key='YOUR_API_KEY', 158 proxy_url='https://your-proxy.com', 159 proxy_headers=make_headers(proxy_basic_auth='username:password'), 160 ssl_ca_certs='path/to/cert-bundle.pem' 161 ) 162 163 pc.list_indexes() 164 ``` 165 166 ### Disabling SSL verification 167 168 If you would like to disable SSL verification, you can pass the `ssl_verify` 169 parameter with a value of `False`. We do not recommend going to production with SSL verification disabled. 170 171 ```python 172 from pinecone import Pinecone 173 import urllib3 import make_headers 174 175 pc = Pinecone( 176 api_key='YOUR_API_KEY', 177 proxy_url='https://your-proxy.com', 178 proxy_headers=make_headers(proxy_basic_auth='username:password'), 179 ssl_ca_certs='path/to/cert-bundle.pem', 180 ssl_verify=False 181 ) 182 183 pc.list_indexes() 184 185 ``` 186 """ 187 188 pass 189 190 @abstractmethod 191 def create_index( 192 self, 193 name: str, 194 spec: Union[Dict, ServerlessSpec, PodSpec], 195 dimension: Optional[int], 196 metric: Optional[Union[Metric, str]] = Metric.COSINE, 197 timeout: Optional[int] = None, 198 deletion_protection: Optional[Union[DeletionProtection, str]] = DeletionProtection.DISABLED, 199 vector_type: Optional[Union[VectorType, str]] = VectorType.DENSE, 200 tags: Optional[Dict[str, str]] = None, 201 ) -> IndexModel: 202 """Creates a Pinecone index. 203 204 :param name: The name of the index to create. Must be unique within your project and 205 cannot be changed once created. Allowed characters are lowercase letters, numbers, 206 and hyphens and the name may not begin or end with hyphens. Maximum length is 45 characters. 207 :type name: str 208 :param metric: Type of similarity metric used in the vector index when querying, one of `{"cosine", "dotproduct", "euclidean"}`. 209 :type metric: str, optional 210 :param spec: A dictionary containing configurations describing how the index should be deployed. For serverless indexes, 211 specify region and cloud. For pod indexes, specify replicas, shards, pods, pod_type, metadata_config, and source_collection. 212 Alternatively, use the `ServerlessSpec` or `PodSpec` objects to specify these configurations. 213 :type spec: Dict 214 :param dimension: If you are creating an index with `vector_type="dense"` (which is the default), you need to specify `dimension` to indicate the size of your vectors. 215 This should match the dimension of the embeddings you will be inserting. For example, if you are using 216 OpenAI's CLIP model, you should use `dimension=1536`. Dimension is a required field when 217 creating an index with `vector_type="dense"` and should not be passed when `vector_type="sparse"`. 218 :type dimension: int 219 :type timeout: int, optional 220 :param timeout: Specify the number of seconds to wait until index gets ready. If None, wait indefinitely; if >=0, time out after this many seconds; 221 if -1, return immediately and do not wait. 222 :param deletion_protection: If enabled, the index cannot be deleted. If disabled, the index can be deleted. 223 :type deletion_protection: Optional[Literal["enabled", "disabled"]] 224 :param vector_type: The type of vectors to be stored in the index. One of `{"dense", "sparse"}`. 225 :type vector_type: str, optional 226 :param tags: Tags are key-value pairs you can attach to indexes to better understand, organize, and identify your resources. Some example use cases include tagging indexes with the name of the model that generated the embeddings, the date the index was created, or the purpose of the index. 227 :type tags: Optional[Dict[str, str]] 228 :return: A `IndexModel` instance containing a description of the index that was created. 229 230 ### Creating a serverless index 231 232 ```python 233 import os 234 from pinecone import ( 235 Pinecone, 236 ServerlessSpec, 237 CloudProvider, 238 AwsRegion, 239 Metric, 240 DeletionProtection, 241 VectorType 242 ) 243 244 pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY")) 245 246 pc.create_index( 247 name="my_index", 248 dimension=1536, 249 metric=Metric.COSINE, 250 spec=ServerlessSpec( 251 cloud=CloudProvider.AWS, 252 region=AwsRegion.US_WEST_2 253 ), 254 deletion_protection=DeletionProtection.DISABLED, 255 vector_type=VectorType.DENSE, 256 tags={ 257 "model": "clip", 258 "app": "image-search", 259 "env": "testing" 260 } 261 ) 262 ``` 263 264 ### Creating a pod index 265 266 ```python 267 import os 268 from pinecone import ( 269 Pinecone, 270 PodSpec, 271 PodIndexEnvironment, 272 PodType, 273 Metric, 274 DeletionProtection, 275 VectorType 276 ) 277 278 pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY")) 279 280 pc.create_index( 281 name="my_index", 282 dimension=1536, 283 metric=Metric.COSINE, 284 spec=PodSpec( 285 environment=PodIndexEnvironment.US_EAST4_GCP, 286 pod_type=PodType.P1_X1 287 ), 288 deletion_protection=DeletionProtection.DISABLED, 289 tags={ 290 "model": "clip", 291 "app": "image-search", 292 "env": "testing" 293 } 294 ) 295 ``` 296 """ 297 pass 298 299 @abstractmethod 300 def create_index_for_model( 301 self, 302 name: str, 303 cloud: Union[CloudProvider, str], 304 region: Union[AwsRegion, GcpRegion, AzureRegion, str], 305 embed: Union[IndexEmbed, CreateIndexForModelEmbedTypedDict], 306 tags: Optional[Dict[str, str]] = None, 307 deletion_protection: Optional[Union[DeletionProtection, str]] = DeletionProtection.DISABLED, 308 timeout: Optional[int] = None, 309 ) -> IndexModel: 310 """ 311 :param name: The name of the index to create. Must be unique within your project and 312 cannot be changed once created. Allowed characters are lowercase letters, numbers, 313 and hyphens and the name may not begin or end with hyphens. Maximum length is 45 characters. 314 :type name: str 315 :param cloud: The cloud provider to use for the index. One of `{"aws", "gcp", "azure"}`. 316 :type cloud: str 317 :param region: The region to use for the index. Enum objects `AwsRegion`, `GcpRegion`, and `AzureRegion` are also available to help you quickly set these parameters, but may not be up to date as new regions become available. 318 :type region: str 319 :param embed: The embedding configuration for the index. This param accepts a dictionary or an instance of the `IndexEmbed` object. 320 :type embed: Union[Dict, IndexEmbed] 321 :param tags: Tags are key-value pairs you can attach to indexes to better understand, organize, and identify your resources. Some example use cases include tagging indexes with the name of the model that generated the embeddings, the date the index was created, or the purpose of the index. 322 :type tags: Optional[Dict[str, str]] 323 :param deletion_protection: If enabled, the index cannot be deleted. If disabled, the index can be deleted. This setting can be changed with `configure_index`. 324 :type deletion_protection: Optional[Literal["enabled", "disabled"]] 325 :type timeout: Optional[int] 326 :param timeout: Specify the number of seconds to wait until index is ready to receive data. If None, wait indefinitely; if >=0, time out after this many seconds; 327 if -1, return immediately and do not wait. 328 :return: A description of the index that was created. 329 :rtype: IndexModel 330 331 This method is used to create a Serverless index that is configured for use with Pinecone's integrated inference models. 332 333 The resulting index can be described, listed, configured, and deleted like any other Pinecone index with the `describe_index`, `list_indexes`, `configure_index`, and `delete_index` methods. 334 335 After the model is created, you can upsert records into the index with the `upsert_records` method, and search your records with the `search` method. 336 337 ```python 338 from pinecone import ( 339 Pinecone, 340 IndexEmbed, 341 CloudProvider, 342 AwsRegion, 343 EmbedModel, 344 Metric, 345 ) 346 347 pc = Pinecone() 348 349 if not pc.has_index("book-search"): 350 desc = await pc.create_index_for_model( 351 name="book-search", 352 cloud=CloudProvider.AWS, 353 region=AwsRegion.US_EAST_1, 354 embed=IndexEmbed( 355 model=EmbedModel.Multilingual_E5_Large, 356 metric=Metric.COSINE, 357 field_map={ 358 "text": "description", 359 }, 360 ) 361 ) 362 ``` 363 364 To see the available cloud regions, see this [Pinecone documentation](https://docs.pinecone.io/troubleshooting/available-cloud-regions) page. 365 366 See the [Model Gallery](https://docs.pinecone.io/models/overview) to learn about available models. 367 """ 368 pass 369 370 @abstractmethod 371 def delete_index(self, name: str, timeout: Optional[int] = None): 372 """ 373 :param name: the name of the index. 374 :type name: str 375 :param timeout: Number of seconds to poll status checking whether the index has been deleted. If None, 376 wait indefinitely; if >=0, time out after this many seconds; 377 if -1, return immediately and do not wait. 378 :type timeout: int, optional 379 380 Deletes a Pinecone index. 381 382 Deleting an index is an irreversible operation. All data in the index will be lost. 383 When you use this command, a request is sent to the Pinecone control plane to delete 384 the index, but the termination is not synchronous because resources take a few moments to 385 be released. 386 387 By default the `delete_index` method will block until polling of the `describe_index` method 388 shows that the delete operation has completed. If you prefer to return immediately and not 389 wait for the index to be deleted, you can pass `timeout=-1` to the method. 390 391 After the delete request is submitted, polling `describe_index` will show that the index 392 transitions into a `Terminating` state before eventually resulting in a 404 after it has been removed. 393 394 This operation can fail if the index is configured with `deletion_protection="enabled"`. 395 In this case, you will need to call `configure_index` to disable deletion protection before 396 you can delete the index. 397 398 ```python 399 from pinecone import Pinecone 400 401 pc = Pinecone() 402 403 index_name = "my_index" 404 desc = pc.describe_index(name=index_name) 405 406 if desc.deletion_protection == "enabled": 407 # If for some reason deletion protection is enabled, you will need to disable it first 408 # before you can delete the index. But use caution as this operation is not reversible 409 # and if somebody enabled deletion protection, they probably had a good reason. 410 pc.configure_index(name=index_name, deletion_protection="disabled") 411 412 pc.delete_index(name=index_name) 413 ``` 414 """ 415 pass 416 417 @abstractmethod 418 def list_indexes(self) -> IndexList: 419 """ 420 :return: Returns an `IndexList` object, which is iterable and contains a 421 list of `IndexModel` objects. The `IndexList` also has a convenience method `names()` 422 which returns a list of index names for situations where you just want to iterate over 423 all index names. 424 425 Lists all indexes in your project. 426 427 The results include a description of all indexes in your project, including the 428 index name, dimension, metric, status, and spec. 429 430 If you simply want to check whether an index exists, see the `has_index()` convenience method. 431 432 You can use the `list_indexes()` method to iterate over descriptions of every index in your project. 433 434 ```python 435 from pinecone import Pinecone 436 437 pc = Pinecone() 438 439 for index in pc.list_indexes(): 440 print(index.name) 441 print(index.dimension) 442 print(index.metric) 443 print(index.status) 444 print(index.host) 445 print(index.spec) 446 ``` 447 """ 448 pass 449 450 @abstractmethod 451 def describe_index(self, name: str) -> IndexModel: 452 """ 453 :param name: the name of the index to describe. 454 :return: Returns an `IndexModel` object 455 which gives access to properties such as the 456 index name, dimension, metric, host url, status, 457 and spec. 458 459 Describes a Pinecone index. 460 461 ### Getting your index host url 462 463 In a real production situation, you probably want to 464 store the host url in an environment variable so you 465 don't have to call describe_index and re-fetch it 466 every time you want to use the index. But this example 467 shows how to get the value from the API using describe_index. 468 469 ```python 470 from pinecone import Pinecone, Index 471 472 pc = Pinecone() 473 474 index_name="my_index" 475 description = pc.describe_index(name=index_name) 476 print(description) 477 # { 478 # "name": "my_index", 479 # "metric": "cosine", 480 # "host": "my_index-dojoi3u.svc.aped-4627-b74a.pinecone.io", 481 # "spec": { 482 # "serverless": { 483 # "cloud": "aws", 484 # "region": "us-east-1" 485 # } 486 # }, 487 # "status": { 488 # "ready": true, 489 # "state": "Ready" 490 # }, 491 # "vector_type": "dense", 492 # "dimension": 1024, 493 # "deletion_protection": "enabled", 494 # "tags": { 495 # "environment": "production" 496 # } 497 # } 498 499 print(f"Your index is hosted at {description.host}") 500 501 index = pc.Index(host=description.host) 502 index.upsert(vectors=[...]) 503 ``` 504 """ 505 pass 506 507 @abstractmethod 508 def has_index(self, name: str) -> bool: 509 """ 510 :param name: The name of the index to check for existence. 511 :return: Returns `True` if the index exists, `False` otherwise. 512 513 Checks if a Pinecone index exists. 514 515 ```python 516 from pinecone import Pinecone, ServerlessSpec 517 518 pc = Pinecone() 519 520 index_name = "my_index" 521 if not pc.has_index(index_name): 522 print("Index does not exist, creating...") 523 pc.create_index( 524 name=index_name, 525 dimension=768, 526 metric="cosine", 527 spec=ServerlessSpec(cloud="aws", region="us-west-2") 528 ) 529 ``` 530 """ 531 pass 532 533 @abstractmethod 534 def configure_index( 535 self, 536 name: str, 537 replicas: Optional[int] = None, 538 pod_type: Optional[Union[PodType, str]] = None, 539 deletion_protection: Optional[Union[DeletionProtection, str]] = None, 540 tags: Optional[Dict[str, str]] = None, 541 ): 542 """ 543 :param: name: the name of the Index 544 :param: replicas: the desired number of replicas, lowest value is 0. 545 :param: pod_type: the new pod_type for the index. To learn more about the 546 available pod types, please see [Understanding Indexes](https://docs.pinecone.io/docs/indexes) 547 :param: deletion_protection: If set to 'enabled', the index cannot be deleted. If 'disabled', the index can be deleted. 548 :param: tags: A dictionary of tags to apply to the index. Tags are key-value pairs that can be used to organize and manage indexes. To remove a tag, set the value to "". Tags passed to configure_index will be merged with existing tags and any with the value empty string will be removed. 549 550 This method is used to modify an index's configuration. It can be used to: 551 552 - Scale a pod-based index horizontally using `replicas` 553 - Scale a pod-based index vertically using `pod_type` 554 - Enable or disable deletion protection using `deletion_protection` 555 - Add, change, or remove tags using `tags` 556 557 ## Scaling pod-based indexes 558 559 To scale your pod-based index, you pass a `replicas` and/or `pod_type` param to the `configure_index` method. `pod_type` may be a string or a value from the `PodType` enum. 560 561 ```python 562 from pinecone import Pinecone, PodType 563 564 pc = Pinecone() 565 pc.configure_index( 566 name="my_index", 567 replicas=2, 568 pod_type=PodType.P1_X2 569 ) 570 ``` 571 572 After providing these new configurations, you must call `describe_index` to see the status of the index as the changes are applied. 573 574 ## Enabling or disabling deletion protection 575 576 To enable or disable deletion protection, pass the `deletion_protection` parameter to the `configure_index` method. When deletion protection 577 is enabled, the index cannot be deleted with the `delete_index` method. 578 579 ```python 580 from pinecone import Pinecone, DeletionProtection 581 582 pc = Pinecone() 583 584 # Enable deletion protection 585 pc.configure_index( 586 name="my_index", 587 deletion_protection=DeletionProtection.ENABLED 588 ) 589 590 # Call describe_index to see the change was applied. 591 assert pc.describe_index("my_index").deletion_protection == "enabled" 592 593 # Disable deletion protection 594 pc.configure_index( 595 name="my_index", 596 deletion_protection=DeletionProtection.DISABLED 597 ) 598 ``` 599 600 ## Adding, changing, or removing tags 601 602 To add, change, or remove tags, pass the `tags` parameter to the `configure_index` method. When tags are passed using `configure_index`, 603 they are merged with any existing tags already on the index. To remove a tag, set the value of the key to an empty string. 604 605 ```python 606 from pinecone import Pinecone 607 608 pc = Pinecone() 609 610 # Add a tag 611 pc.configure_index(name="my_index", tags={"environment": "staging"}) 612 613 # Change a tag 614 pc.configure_index(name="my_index", tags={"environment": "production"}) 615 616 # Remove a tag 617 pc.configure_index(name="my_index", tags={"environment": ""}) 618 619 # Call describe_index to view the tags are changed 620 print(pc.describe_index("my_index").tags) 621 ``` 622 """ 623 pass 624 625 @abstractmethod 626 def create_collection(self, name: str, source: str): 627 """Create a collection from a pod-based index 628 629 :param name: Name of the collection 630 :param source: Name of the source index 631 """ 632 pass 633 634 @abstractmethod 635 def list_collections(self) -> CollectionList: 636 """List all collections 637 638 ```python 639 from pinecone import Pinecone 640 641 pc = Pinecone() 642 643 for collection in pc.list_collections(): 644 print(collection.name) 645 print(collection.source) 646 647 # You can also iterate specifically over the collection 648 # names with the .names() helper. 649 collection_name="my_collection" 650 for collection_name in pc.list_collections().names(): 651 print(collection_name) 652 ``` 653 """ 654 pass 655 656 @abstractmethod 657 def delete_collection(self, name: str) -> None: 658 """ 659 :param name: The name of the collection to delete. 660 661 Deletes a collection. 662 663 Deleting a collection is an irreversible operation. All data 664 in the collection will be lost. 665 666 This method tells Pinecone you would like to delete a collection, 667 but it takes a few moments to complete the operation. Use the 668 `describe_collection()` method to confirm that the collection 669 has been deleted. 670 671 ```python 672 from pinecone import Pinecone 673 674 pc = Pinecone() 675 676 pc.delete_collection(name="my_collection") 677 ``` 678 """ 679 pass 680 681 @abstractmethod 682 def describe_collection(self, name: str): 683 """Describes a collection. 684 :param: The name of the collection 685 :return: Description of the collection 686 687 ```python 688 from pinecone import Pinecone 689 690 pc = Pinecone() 691 692 description = pc.describe_collection("my_collection") 693 print(description.name) 694 print(description.source) 695 print(description.status) 696 print(description.size) 697 ``` 698 """ 699 pass 700 701 @abstractmethod 702 def Index(self, name: str = "", host: str = "", **kwargs): 703 """ 704 :param name: The name of the index to target. If you specify the name of the index, the client will 705 fetch the host url from the Pinecone control plane. 706 :param host: The host url of the index to target. If you specify the host url, the client will use 707 the host url directly without making any additional calls to the control plane. 708 :param pool_threads: The number of threads to use when making parallel requests by calling index methods with optional kwarg async_req=True, or using methods that make use of thread-based parallelism automatically such as query_namespaces(). 709 :param connection_pool_maxsize: The maximum number of connections to keep in the connection pool. 710 :return: An instance of the `Index` class. 711 712 Target an index for data operations. 713 714 ### Target an index by host url 715 716 In production situations, you want to uspert or query your data as quickly 717 as possible. If you know in advance the host url of your index, you can 718 eliminate a round trip to the Pinecone control plane by specifying the 719 host of the index. If instead you pass the name of the index, the client 720 will need to make an additional call to api.pinecone.io to get the host url 721 before any data operations can take place. 722 723 ```python 724 import os 725 from pinecone import Pinecone 726 727 api_key = os.environ.get("PINECONE_API_KEY") 728 index_host = os.environ.get("PINECONE_INDEX_HOST") 729 730 pc = Pinecone(api_key=api_key) 731 index = pc.Index(host=index_host) 732 733 # Now you're ready to perform data operations 734 index.query(vector=[...], top_k=10) 735 ``` 736 737 To find your host url, you can use the describe_index method to call api.pinecone.io. 738 The host url is returned in the response. Or, alternatively, the 739 host is displayed in the Pinecone web console. 740 741 ```python 742 import os 743 from pinecone import Pinecone 744 745 pc = Pinecone( 746 api_key=os.environ.get("PINECONE_API_KEY") 747 ) 748 749 host = pc.describe_index('index-name').host 750 ``` 751 752 ### Target an index by name (not recommended for production) 753 754 For more casual usage, such as when you are playing and exploring with Pinecone 755 in a notebook setting, you can also target an index by name. If you use this 756 approach, the client may need to perform an extra call to the Pinecone control 757 plane to get the host url on your behalf to get the index host. 758 759 The client will cache the index host for future use whenever it is seen, so you 760 will only incur the overhead of only one call. But this approach is not 761 recommended for production usage because it introduces an unnecessary runtime 762 dependency on api.pinecone.io. 763 764 ```python 765 import os 766 from pinecone import Pinecone, ServerlessSpec 767 768 api_key = os.environ.get("PINECONE_API_KEY") 769 770 pc = Pinecone(api_key=api_key) 771 pc.create_index( 772 name='my_index', 773 dimension=1536, 774 metric='cosine', 775 spec=ServerlessSpec(cloud='aws', region='us-west-2') 776 ) 777 index = pc.Index('my_index') 778 779 # Now you're ready to perform data operations 780 index.query(vector=[...], top_k=10) 781 ``` 782 """ 783 pass 784 785 def IndexAsyncio(self, host: str, **kwargs): 786 """Build an asyncio-compatible Index object. 787 788 :param host: The host url of the index to target. You can find this url in the Pinecone 789 web console or by calling describe_index method of `Pinecone` or `PineconeAsyncio`. 790 791 :return: An instance of the `IndexAsyncio` class. 792 """ 793 pass
Helper class that provides a standard way to create an ABC using inheritance.
29 @abstractmethod 30 def __init__( 31 self, 32 api_key: Optional[str] = None, 33 host: Optional[str] = None, 34 proxy_url: Optional[str] = None, 35 proxy_headers: Optional[Dict[str, str]] = None, 36 ssl_ca_certs: Optional[str] = None, 37 ssl_verify: Optional[bool] = None, 38 additional_headers: Optional[Dict[str, str]] = {}, 39 pool_threads: Optional[int] = 1, 40 **kwargs, 41 ): 42 """ 43 The `Pinecone` class is the main entry point for interacting with Pinecone via this Python SDK. 44 Instances of the `Pinecone` class are used to create, delete, and manage your indexes and collections. The class also holds inference functionality (embed, rerank) under the `inference` namespace. 45 Methods which create or modify index and collection resources result in network calls to https://api.pinecone.io. 46 47 When you are ready to perform data operations on an index, you will need to instantiate an index client. Though the functionality of the index client is defined in a different 48 class, it is instantiated through the `Index()` method in order for configurations to be shared between the two objects. 49 50 :param api_key: The API key to use for authentication. If not passed via kwarg, the API key will be read from the environment variable `PINECONE_API_KEY`. 51 :type api_key: str, optional 52 :param host: The control plane host. If unspecified, the host `api.pinecone.io` will be used. 53 :type host: str, optional 54 :param proxy_url: The URL of the proxy to use for the connection. 55 :type proxy_url: str, optional 56 :param proxy_headers: Additional headers to pass to the proxy. Use this if your proxy setup requires authentication. 57 :type proxy_headers: Dict[str, str], optional 58 :param ssl_ca_certs: The path to the SSL CA certificate bundle to use for the connection. This path should point to a file in PEM format. When not passed, the SDK will use the certificate bundle returned from `certifi.where()`. 59 :type ssl_ca_certs: str, optional 60 :param ssl_verify: SSL verification is performed by default, but can be disabled using the boolean flag when testing with Pinecone Local or troubleshooting a proxy setup. You should never run with SSL verification disabled in production. 61 :type ssl_verify: bool, optional 62 :param additional_headers: Additional headers to pass to the API. This is mainly to support internal testing at Pinecone. End users should not need to use this unless following specific instructions to do so. 63 :type additional_headers: Dict[str, str], optional 64 :param pool_threads: The number of threads to use for the ThreadPool when using methods that support the `async_req` keyword argument. The default number of threads is 5 * the number of CPUs in your execution environment. 65 :type pool_threads: int, optional 66 67 ### Configuration with environment variables 68 69 If you instantiate the Pinecone client with no arguments, it will attempt to read the API key from the environment variable `PINECONE_API_KEY`. 70 71 ```python 72 from pinecone import Pinecone 73 74 pc = Pinecone() 75 ``` 76 77 ### Configuration with keyword arguments 78 79 If you prefer being more explicit in your code, you can also pass the API key as a keyword argument. This is also where you will pass additional configuration options such as proxy settings if you wish to use those. 80 81 ```python 82 import os 83 from pinecone import Pinecone 84 85 pc = Pinecone( 86 api_key=os.environ.get("PINECONE_API_KEY"), 87 host="https://api-staging.pinecone.io" 88 ) 89 ``` 90 91 ### Environment variables 92 93 The Pinecone client supports the following environment variables: 94 95 - `PINECONE_API_KEY`: The API key to use for authentication. If not passed via 96 kwarg, the API key will be read from the environment variable `PINECONE_API_KEY`. 97 98 - `PINECONE_DEBUG_CURL`: When troubleshooting it can be very useful to run curl 99 commands against the control plane API to see exactly what data is being sent 100 and received without all the abstractions and transformations applied by the Python 101 SDK. If you set this environment variable to `true`, the Pinecone client will use 102 request parameters to print out an equivalent curl command that you can run yourself 103 or share with Pinecone support. **Be very careful with this option, as it will print out 104 your API key** which forms part of a required authentication header. The main use of 105 is to help evaluate whether a problem you are experiencing is due to the API's behavior 106 or the behavior of the SDK itself. 107 108 ### Proxy configuration 109 110 If your network setup requires you to interact with Pinecone via a proxy, you will need 111 to pass additional configuration using optional keyword parameters. These optional parameters 112 are forwarded to `urllib3`, which is the underlying library currently used by the Pinecone client to 113 make HTTP requests. You may find it helpful to refer to the 114 [urllib3 documentation on working with proxies](https://urllib3.readthedocs.io/en/stable/advanced-usage.html#http-and-https-proxies) 115 while troubleshooting these settings. 116 117 Here is a basic example: 118 119 ```python 120 from pinecone import Pinecone 121 122 pc = Pinecone( 123 api_key='YOUR_API_KEY', 124 proxy_url='https://your-proxy.com' 125 ) 126 127 pc.list_indexes() 128 ``` 129 130 If your proxy requires authentication, you can pass those values in a header dictionary using the `proxy_headers` parameter. 131 132 ```python 133 from pinecone import Pinecone 134 import urllib3 import make_headers 135 136 pc = Pinecone( 137 api_key='YOUR_API_KEY', 138 proxy_url='https://your-proxy.com', 139 proxy_headers=make_headers(proxy_basic_auth='username:password') 140 ) 141 142 pc.list_indexes() 143 ``` 144 145 ### Using proxies with self-signed certificates 146 147 By default the Pinecone Python client will perform SSL certificate verification 148 using the CA bundle maintained by Mozilla in the [certifi](https://pypi.org/project/certifi/) package. 149 If your proxy server is using a self-signed certificate, you will need to pass the path to the certificate 150 in PEM format using the `ssl_ca_certs` parameter. 151 152 ```python 153 from pinecone import Pinecone 154 import urllib3 import make_headers 155 156 pc = Pinecone( 157 api_key='YOUR_API_KEY', 158 proxy_url='https://your-proxy.com', 159 proxy_headers=make_headers(proxy_basic_auth='username:password'), 160 ssl_ca_certs='path/to/cert-bundle.pem' 161 ) 162 163 pc.list_indexes() 164 ``` 165 166 ### Disabling SSL verification 167 168 If you would like to disable SSL verification, you can pass the `ssl_verify` 169 parameter with a value of `False`. We do not recommend going to production with SSL verification disabled. 170 171 ```python 172 from pinecone import Pinecone 173 import urllib3 import make_headers 174 175 pc = Pinecone( 176 api_key='YOUR_API_KEY', 177 proxy_url='https://your-proxy.com', 178 proxy_headers=make_headers(proxy_basic_auth='username:password'), 179 ssl_ca_certs='path/to/cert-bundle.pem', 180 ssl_verify=False 181 ) 182 183 pc.list_indexes() 184 185 ``` 186 """
The Pinecone
class is the main entry point for interacting with Pinecone via this Python SDK.
Instances of the Pinecone
class are used to create, delete, and manage your indexes and collections. The class also holds inference functionality (embed, rerank) under the inference
namespace.
Methods which create or modify index and collection resources result in network calls to https://apipinecone.control.pinecone.io.
When you are ready to perform data operations on an index, you will need to instantiate an index client. Though the functionality of the index client is defined in a different
class, it is instantiated through the Index()
method in order for configurations to be shared between the two objects.
Parameters
- api_key: The API key to use for authentication. If not passed via kwarg, the API key will be read from the environment variable
PINECONE_API_KEY
. - host: The control plane host. If unspecified, the host
api.pinecone.io
will be used. - proxy_url: The URL of the proxy to use for the connection.
- proxy_headers: Additional headers to pass to the proxy. Use this if your proxy setup requires authentication.
- ssl_ca_certs: The path to the SSL CA certificate bundle to use for the connection. This path should point to a file in PEM format. When not passed, the SDK will use the certificate bundle returned from
certifi.where()
. - ssl_verify: SSL verification is performed by default, but can be disabled using the boolean flag when testing with Pinecone Local or troubleshooting a proxy setup. You should never run with SSL verification disabled in production.
- additional_headers: Additional headers to pass to the API. This is mainly to support internal testing at Pinecone. End users should not need to use this unless following specific instructions to do so.
- pool_threads: The number of threads to use for the ThreadPool when using methods that support the
async_req
keyword argument. The default number of threads is 5 * the number of CPUs in your execution environment.
Configuration with environment variables
If you instantiate the Pinecone client with no arguments, it will attempt to read the API key from the environment variable PINECONE_API_KEY
.
from pinecone import Pinecone
pc = Pinecone()
Configuration with keyword arguments
If you prefer being more explicit in your code, you can also pass the API key as a keyword argument. This is also where you will pass additional configuration options such as proxy settings if you wish to use those.
import os
from pinecone import Pinecone
pc = Pinecone(
api_key=os.environ.get("PINECONE_API_KEY"),
host="https://api-staging.pinecone.io"
)
Environment variables
The Pinecone client supports the following environment variables:
PINECONE_API_KEY
: The API key to use for authentication. If not passed via kwarg, the API key will be read from the environment variablePINECONE_API_KEY
.PINECONE_DEBUG_CURL
: When troubleshooting it can be very useful to run curl commands against the control plane API to see exactly what data is being sent and received without all the abstractions and transformations applied by the Python SDK. If you set this environment variable totrue
, the Pinecone client will use request parameters to print out an equivalent curl command that you can run yourself or share with Pinecone support. Be very careful with this option, as it will print out your API key which forms part of a required authentication header. The main use of is to help evaluate whether a problem you are experiencing is due to the API's behavior or the behavior of the SDK itself.
Proxy configuration
If your network setup requires you to interact with Pinecone via a proxy, you will need
to pass additional configuration using optional keyword parameters. These optional parameters
are forwarded to urllib3
, which is the underlying library currently used by the Pinecone client to
make HTTP requests. You may find it helpful to refer to the
urllib3 documentation on working with proxies
while troubleshooting these settings.
Here is a basic example:
from pinecone import Pinecone
pc = Pinecone(
api_key='YOUR_API_KEY',
proxy_url='https://your-proxy.com'
)
pc.list_indexes()
If your proxy requires authentication, you can pass those values in a header dictionary using the proxy_headers
parameter.
from pinecone import Pinecone
import urllib3 import make_headers
pc = Pinecone(
api_key='YOUR_API_KEY',
proxy_url='https://your-proxy.com',
proxy_headers=make_headers(proxy_basic_auth='username:password')
)
pc.list_indexes()
Using proxies with self-signed certificates
By default the Pinecone Python client will perform SSL certificate verification
using the CA bundle maintained by Mozilla in the certifi package.
If your proxy server is using a self-signed certificate, you will need to pass the path to the certificate
in PEM format using the ssl_ca_certs
parameter.
from pinecone import Pinecone
import urllib3 import make_headers
pc = Pinecone(
api_key='YOUR_API_KEY',
proxy_url='https://your-proxy.com',
proxy_headers=make_headers(proxy_basic_auth='username:password'),
ssl_ca_certs='path/to/cert-bundle.pem'
)
pc.list_indexes()
Disabling SSL verification
If you would like to disable SSL verification, you can pass the ssl_verify
parameter with a value of False
. We do not recommend going to production with SSL verification disabled.
from pinecone import Pinecone
import urllib3 import make_headers
pc = Pinecone(
api_key='YOUR_API_KEY',
proxy_url='https://your-proxy.com',
proxy_headers=make_headers(proxy_basic_auth='username:password'),
ssl_ca_certs='path/to/cert-bundle.pem',
ssl_verify=False
)
pc.list_indexes()
190 @abstractmethod 191 def create_index( 192 self, 193 name: str, 194 spec: Union[Dict, ServerlessSpec, PodSpec], 195 dimension: Optional[int], 196 metric: Optional[Union[Metric, str]] = Metric.COSINE, 197 timeout: Optional[int] = None, 198 deletion_protection: Optional[Union[DeletionProtection, str]] = DeletionProtection.DISABLED, 199 vector_type: Optional[Union[VectorType, str]] = VectorType.DENSE, 200 tags: Optional[Dict[str, str]] = None, 201 ) -> IndexModel: 202 """Creates a Pinecone index. 203 204 :param name: The name of the index to create. Must be unique within your project and 205 cannot be changed once created. Allowed characters are lowercase letters, numbers, 206 and hyphens and the name may not begin or end with hyphens. Maximum length is 45 characters. 207 :type name: str 208 :param metric: Type of similarity metric used in the vector index when querying, one of `{"cosine", "dotproduct", "euclidean"}`. 209 :type metric: str, optional 210 :param spec: A dictionary containing configurations describing how the index should be deployed. For serverless indexes, 211 specify region and cloud. For pod indexes, specify replicas, shards, pods, pod_type, metadata_config, and source_collection. 212 Alternatively, use the `ServerlessSpec` or `PodSpec` objects to specify these configurations. 213 :type spec: Dict 214 :param dimension: If you are creating an index with `vector_type="dense"` (which is the default), you need to specify `dimension` to indicate the size of your vectors. 215 This should match the dimension of the embeddings you will be inserting. For example, if you are using 216 OpenAI's CLIP model, you should use `dimension=1536`. Dimension is a required field when 217 creating an index with `vector_type="dense"` and should not be passed when `vector_type="sparse"`. 218 :type dimension: int 219 :type timeout: int, optional 220 :param timeout: Specify the number of seconds to wait until index gets ready. If None, wait indefinitely; if >=0, time out after this many seconds; 221 if -1, return immediately and do not wait. 222 :param deletion_protection: If enabled, the index cannot be deleted. If disabled, the index can be deleted. 223 :type deletion_protection: Optional[Literal["enabled", "disabled"]] 224 :param vector_type: The type of vectors to be stored in the index. One of `{"dense", "sparse"}`. 225 :type vector_type: str, optional 226 :param tags: Tags are key-value pairs you can attach to indexes to better understand, organize, and identify your resources. Some example use cases include tagging indexes with the name of the model that generated the embeddings, the date the index was created, or the purpose of the index. 227 :type tags: Optional[Dict[str, str]] 228 :return: A `IndexModel` instance containing a description of the index that was created. 229 230 ### Creating a serverless index 231 232 ```python 233 import os 234 from pinecone import ( 235 Pinecone, 236 ServerlessSpec, 237 CloudProvider, 238 AwsRegion, 239 Metric, 240 DeletionProtection, 241 VectorType 242 ) 243 244 pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY")) 245 246 pc.create_index( 247 name="my_index", 248 dimension=1536, 249 metric=Metric.COSINE, 250 spec=ServerlessSpec( 251 cloud=CloudProvider.AWS, 252 region=AwsRegion.US_WEST_2 253 ), 254 deletion_protection=DeletionProtection.DISABLED, 255 vector_type=VectorType.DENSE, 256 tags={ 257 "model": "clip", 258 "app": "image-search", 259 "env": "testing" 260 } 261 ) 262 ``` 263 264 ### Creating a pod index 265 266 ```python 267 import os 268 from pinecone import ( 269 Pinecone, 270 PodSpec, 271 PodIndexEnvironment, 272 PodType, 273 Metric, 274 DeletionProtection, 275 VectorType 276 ) 277 278 pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY")) 279 280 pc.create_index( 281 name="my_index", 282 dimension=1536, 283 metric=Metric.COSINE, 284 spec=PodSpec( 285 environment=PodIndexEnvironment.US_EAST4_GCP, 286 pod_type=PodType.P1_X1 287 ), 288 deletion_protection=DeletionProtection.DISABLED, 289 tags={ 290 "model": "clip", 291 "app": "image-search", 292 "env": "testing" 293 } 294 ) 295 ``` 296 """ 297 pass
Creates a Pinecone index.
Parameters
- name: The name of the index to create. Must be unique within your project and cannot be changed once created. Allowed characters are lowercase letters, numbers, and hyphens and the name may not begin or end with hyphens. Maximum length is 45 characters.
- metric: Type of similarity metric used in the vector index when querying, one of
{"cosine", "dotproduct", "euclidean"}
. - spec: A dictionary containing configurations describing how the index should be deployed. For serverless indexes,
specify region and cloud. For pod indexes, specify replicas, shards, pods, pod_type, metadata_config, and source_collection.
Alternatively, use the
ServerlessSpec
orPodSpec
objects to specify these configurations. - dimension: If you are creating an index with
vector_type="dense"
(which is the default), you need to specifydimension
to indicate the size of your vectors. This should match the dimension of the embeddings you will be inserting. For example, if you are using OpenAI's CLIP model, you should usedimension=1536
. Dimension is a required field when creating an index withvector_type="dense"
and should not be passed whenvector_type="sparse"
. - timeout: Specify the number of seconds to wait until index gets ready. If None, wait indefinitely; if >=0, time out after this many seconds; if -1, return immediately and do not wait.
- deletion_protection: If enabled, the index cannot be deleted. If disabled, the index can be deleted.
- vector_type: The type of vectors to be stored in the index. One of
{"dense", "sparse"}
. - tags: Tags are key-value pairs you can attach to indexes to better understand, organize, and identify your resources. Some example use cases include tagging indexes with the name of the model that generated the embeddings, the date the index was created, or the purpose of the index.
Returns
A
IndexModel
instance containing a description of the index that was created.
Creating a serverless index
import os
from pinecone import (
Pinecone,
ServerlessSpec,
CloudProvider,
AwsRegion,
Metric,
DeletionProtection,
VectorType
)
pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY"))
pc.create_index(
name="my_index",
dimension=1536,
metric=Metric.COSINE,
spec=ServerlessSpec(
cloud=CloudProvider.AWS,
region=AwsRegion.US_WEST_2
),
deletion_protection=DeletionProtection.DISABLED,
vector_type=VectorType.DENSE,
tags={
"model": "clip",
"app": "image-search",
"env": "testing"
}
)
Creating a pod index
import os
from pinecone import (
Pinecone,
PodSpec,
PodIndexEnvironment,
PodType,
Metric,
DeletionProtection,
VectorType
)
pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY"))
pc.create_index(
name="my_index",
dimension=1536,
metric=Metric.COSINE,
spec=PodSpec(
environment=PodIndexEnvironment.US_EAST4_GCP,
pod_type=PodType.P1_X1
),
deletion_protection=DeletionProtection.DISABLED,
tags={
"model": "clip",
"app": "image-search",
"env": "testing"
}
)
299 @abstractmethod 300 def create_index_for_model( 301 self, 302 name: str, 303 cloud: Union[CloudProvider, str], 304 region: Union[AwsRegion, GcpRegion, AzureRegion, str], 305 embed: Union[IndexEmbed, CreateIndexForModelEmbedTypedDict], 306 tags: Optional[Dict[str, str]] = None, 307 deletion_protection: Optional[Union[DeletionProtection, str]] = DeletionProtection.DISABLED, 308 timeout: Optional[int] = None, 309 ) -> IndexModel: 310 """ 311 :param name: The name of the index to create. Must be unique within your project and 312 cannot be changed once created. Allowed characters are lowercase letters, numbers, 313 and hyphens and the name may not begin or end with hyphens. Maximum length is 45 characters. 314 :type name: str 315 :param cloud: The cloud provider to use for the index. One of `{"aws", "gcp", "azure"}`. 316 :type cloud: str 317 :param region: The region to use for the index. Enum objects `AwsRegion`, `GcpRegion`, and `AzureRegion` are also available to help you quickly set these parameters, but may not be up to date as new regions become available. 318 :type region: str 319 :param embed: The embedding configuration for the index. This param accepts a dictionary or an instance of the `IndexEmbed` object. 320 :type embed: Union[Dict, IndexEmbed] 321 :param tags: Tags are key-value pairs you can attach to indexes to better understand, organize, and identify your resources. Some example use cases include tagging indexes with the name of the model that generated the embeddings, the date the index was created, or the purpose of the index. 322 :type tags: Optional[Dict[str, str]] 323 :param deletion_protection: If enabled, the index cannot be deleted. If disabled, the index can be deleted. This setting can be changed with `configure_index`. 324 :type deletion_protection: Optional[Literal["enabled", "disabled"]] 325 :type timeout: Optional[int] 326 :param timeout: Specify the number of seconds to wait until index is ready to receive data. If None, wait indefinitely; if >=0, time out after this many seconds; 327 if -1, return immediately and do not wait. 328 :return: A description of the index that was created. 329 :rtype: IndexModel 330 331 This method is used to create a Serverless index that is configured for use with Pinecone's integrated inference models. 332 333 The resulting index can be described, listed, configured, and deleted like any other Pinecone index with the `describe_index`, `list_indexes`, `configure_index`, and `delete_index` methods. 334 335 After the model is created, you can upsert records into the index with the `upsert_records` method, and search your records with the `search` method. 336 337 ```python 338 from pinecone import ( 339 Pinecone, 340 IndexEmbed, 341 CloudProvider, 342 AwsRegion, 343 EmbedModel, 344 Metric, 345 ) 346 347 pc = Pinecone() 348 349 if not pc.has_index("book-search"): 350 desc = await pc.create_index_for_model( 351 name="book-search", 352 cloud=CloudProvider.AWS, 353 region=AwsRegion.US_EAST_1, 354 embed=IndexEmbed( 355 model=EmbedModel.Multilingual_E5_Large, 356 metric=Metric.COSINE, 357 field_map={ 358 "text": "description", 359 }, 360 ) 361 ) 362 ``` 363 364 To see the available cloud regions, see this [Pinecone documentation](https://docs.pinecone.io/troubleshooting/available-cloud-regions) page. 365 366 See the [Model Gallery](https://docs.pinecone.io/models/overview) to learn about available models. 367 """ 368 pass
Parameters
- name: The name of the index to create. Must be unique within your project and cannot be changed once created. Allowed characters are lowercase letters, numbers, and hyphens and the name may not begin or end with hyphens. Maximum length is 45 characters.
- cloud: The cloud provider to use for the index. One of
{"aws", "gcp", "azure"}
. - region: The region to use for the index. Enum objects
AwsRegion
,GcpRegion
, andAzureRegion
are also available to help you quickly set these parameters, but may not be up to date as new regions become available. - embed: The embedding configuration for the index. This param accepts a dictionary or an instance of the
IndexEmbed
object. - tags: Tags are key-value pairs you can attach to indexes to better understand, organize, and identify your resources. Some example use cases include tagging indexes with the name of the model that generated the embeddings, the date the index was created, or the purpose of the index.
- deletion_protection: If enabled, the index cannot be deleted. If disabled, the index can be deleted. This setting can be changed with
configure_index
. - timeout: Specify the number of seconds to wait until index is ready to receive data. If None, wait indefinitely; if >=0, time out after this many seconds; if -1, return immediately and do not wait.
Returns
A description of the index that was created.
This method is used to create a Serverless index that is configured for use with Pinecone's integrated inference models.
The resulting index can be described, listed, configured, and deleted like any other Pinecone index with the describe_index
, list_indexes
, configure_index
, and delete_index
methods.
After the model is created, you can upsert records into the index with the upsert_records
method, and search your records with the search
method.
from pinecone import (
Pinecone,
IndexEmbed,
CloudProvider,
AwsRegion,
EmbedModel,
Metric,
)
pc = Pinecone()
if not pc.has_index("book-search"):
desc = await pc.create_index_for_model(
name="book-search",
cloud=CloudProvider.AWS,
region=AwsRegion.US_EAST_1,
embed=IndexEmbed(
model=EmbedModel.Multilingual_E5_Large,
metric=Metric.COSINE,
field_map={
"text": "description",
},
)
)
To see the available cloud regions, see this pinecone.control.pinecone.io/troubleshooting/available-cloud-regions">Pinecone documentation page.
See the pinecone.control.pinecone.io/models/overview">Model Gallery to learn about available models.
370 @abstractmethod 371 def delete_index(self, name: str, timeout: Optional[int] = None): 372 """ 373 :param name: the name of the index. 374 :type name: str 375 :param timeout: Number of seconds to poll status checking whether the index has been deleted. If None, 376 wait indefinitely; if >=0, time out after this many seconds; 377 if -1, return immediately and do not wait. 378 :type timeout: int, optional 379 380 Deletes a Pinecone index. 381 382 Deleting an index is an irreversible operation. All data in the index will be lost. 383 When you use this command, a request is sent to the Pinecone control plane to delete 384 the index, but the termination is not synchronous because resources take a few moments to 385 be released. 386 387 By default the `delete_index` method will block until polling of the `describe_index` method 388 shows that the delete operation has completed. If you prefer to return immediately and not 389 wait for the index to be deleted, you can pass `timeout=-1` to the method. 390 391 After the delete request is submitted, polling `describe_index` will show that the index 392 transitions into a `Terminating` state before eventually resulting in a 404 after it has been removed. 393 394 This operation can fail if the index is configured with `deletion_protection="enabled"`. 395 In this case, you will need to call `configure_index` to disable deletion protection before 396 you can delete the index. 397 398 ```python 399 from pinecone import Pinecone 400 401 pc = Pinecone() 402 403 index_name = "my_index" 404 desc = pc.describe_index(name=index_name) 405 406 if desc.deletion_protection == "enabled": 407 # If for some reason deletion protection is enabled, you will need to disable it first 408 # before you can delete the index. But use caution as this operation is not reversible 409 # and if somebody enabled deletion protection, they probably had a good reason. 410 pc.configure_index(name=index_name, deletion_protection="disabled") 411 412 pc.delete_index(name=index_name) 413 ``` 414 """ 415 pass
Parameters
- name: the name of the index.
- timeout: Number of seconds to poll status checking whether the index has been deleted. If None, wait indefinitely; if >=0, time out after this many seconds; if -1, return immediately and do not wait.
Deletes a Pinecone index.
Deleting an index is an irreversible operation. All data in the index will be lost. When you use this command, a request is sent to the Pinecone control plane to delete the index, but the termination is not synchronous because resources take a few moments to be released.
By default the delete_index
method will block until polling of the describe_index
method
shows that the delete operation has completed. If you prefer to return immediately and not
wait for the index to be deleted, you can pass timeout=-1
to the method.
After the delete request is submitted, polling describe_index
will show that the index
transitions into a Terminating
state before eventually resulting in a 404 after it has been removed.
This operation can fail if the index is configured with deletion_protection="enabled"
.
In this case, you will need to call configure_index
to disable deletion protection before
you can delete the index.
from pinecone import Pinecone
pc = Pinecone()
index_name = "my_index"
desc = pc.describe_index(name=index_name)
if desc.deletion_protection == "enabled":
# If for some reason deletion protection is enabled, you will need to disable it first
# before you can delete the index. But use caution as this operation is not reversible
# and if somebody enabled deletion protection, they probably had a good reason.
pc.configure_index(name=index_name, deletion_protection="disabled")
pc.delete_index(name=index_name)
417 @abstractmethod 418 def list_indexes(self) -> IndexList: 419 """ 420 :return: Returns an `IndexList` object, which is iterable and contains a 421 list of `IndexModel` objects. The `IndexList` also has a convenience method `names()` 422 which returns a list of index names for situations where you just want to iterate over 423 all index names. 424 425 Lists all indexes in your project. 426 427 The results include a description of all indexes in your project, including the 428 index name, dimension, metric, status, and spec. 429 430 If you simply want to check whether an index exists, see the `has_index()` convenience method. 431 432 You can use the `list_indexes()` method to iterate over descriptions of every index in your project. 433 434 ```python 435 from pinecone import Pinecone 436 437 pc = Pinecone() 438 439 for index in pc.list_indexes(): 440 print(index.name) 441 print(index.dimension) 442 print(index.metric) 443 print(index.status) 444 print(index.host) 445 print(index.spec) 446 ``` 447 """ 448 pass
Returns
Returns an
IndexList
object, which is iterable and contains a list ofIndexModel
objects. TheIndexList
also has a convenience methodnames()
which returns a list of index names for situations where you just want to iterate over all index names.
Lists all indexes in your project.
The results include a description of all indexes in your project, including the index name, dimension, metric, status, and spec.
If you simply want to check whether an index exists, see the has_index()
convenience method.
You can use the list_indexes()
method to iterate over descriptions of every index in your project.
from pinecone import Pinecone
pc = Pinecone()
for index in pc.list_indexes():
print(index.name)
print(index.dimension)
print(index.metric)
print(index.status)
print(index.host)
print(index.spec)
450 @abstractmethod 451 def describe_index(self, name: str) -> IndexModel: 452 """ 453 :param name: the name of the index to describe. 454 :return: Returns an `IndexModel` object 455 which gives access to properties such as the 456 index name, dimension, metric, host url, status, 457 and spec. 458 459 Describes a Pinecone index. 460 461 ### Getting your index host url 462 463 In a real production situation, you probably want to 464 store the host url in an environment variable so you 465 don't have to call describe_index and re-fetch it 466 every time you want to use the index. But this example 467 shows how to get the value from the API using describe_index. 468 469 ```python 470 from pinecone import Pinecone, Index 471 472 pc = Pinecone() 473 474 index_name="my_index" 475 description = pc.describe_index(name=index_name) 476 print(description) 477 # { 478 # "name": "my_index", 479 # "metric": "cosine", 480 # "host": "my_index-dojoi3u.svc.aped-4627-b74a.pinecone.io", 481 # "spec": { 482 # "serverless": { 483 # "cloud": "aws", 484 # "region": "us-east-1" 485 # } 486 # }, 487 # "status": { 488 # "ready": true, 489 # "state": "Ready" 490 # }, 491 # "vector_type": "dense", 492 # "dimension": 1024, 493 # "deletion_protection": "enabled", 494 # "tags": { 495 # "environment": "production" 496 # } 497 # } 498 499 print(f"Your index is hosted at {description.host}") 500 501 index = pc.Index(host=description.host) 502 index.upsert(vectors=[...]) 503 ``` 504 """ 505 pass
Parameters
- name: the name of the index to describe.
Returns
Returns an
IndexModel
object which gives access to properties such as the index name, dimension, metric, host url, status, and spec.
Describes a Pinecone index.
Getting your index host url
In a real production situation, you probably want to store the host url in an environment variable so you don't have to call describe_index and re-fetch it every time you want to use the index. But this example shows how to get the value from the API using describe_index.
from pinecone import Pinecone, Index
pc = Pinecone()
index_name="my_index"
description = pc.describe_index(name=index_name)
print(description)
# {
# "name": "my_index",
# "metric": "cosine",
# "host": "my_index-dojoi3u.svc.aped-4627-b74a.pinecone.io",
# "spec": {
# "serverless": {
# "cloud": "aws",
# "region": "us-east-1"
# }
# },
# "status": {
# "ready": true,
# "state": "Ready"
# },
# "vector_type": "dense",
# "dimension": 1024,
# "deletion_protection": "enabled",
# "tags": {
# "environment": "production"
# }
# }
print(f"Your index is hosted at {description.host}")
index = pc.Index(host=description.host)
index.upsert(vectors=[...])
507 @abstractmethod 508 def has_index(self, name: str) -> bool: 509 """ 510 :param name: The name of the index to check for existence. 511 :return: Returns `True` if the index exists, `False` otherwise. 512 513 Checks if a Pinecone index exists. 514 515 ```python 516 from pinecone import Pinecone, ServerlessSpec 517 518 pc = Pinecone() 519 520 index_name = "my_index" 521 if not pc.has_index(index_name): 522 print("Index does not exist, creating...") 523 pc.create_index( 524 name=index_name, 525 dimension=768, 526 metric="cosine", 527 spec=ServerlessSpec(cloud="aws", region="us-west-2") 528 ) 529 ``` 530 """ 531 pass
Parameters
- name: The name of the index to check for existence.
Returns
Returns
True
if the index exists,False
otherwise.
Checks if a Pinecone index exists.
from pinecone import Pinecone, ServerlessSpec
pc = Pinecone()
index_name = "my_index"
if not pc.has_index(index_name):
print("Index does not exist, creating...")
pc.create_index(
name=index_name,
dimension=768,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-west-2")
)
533 @abstractmethod 534 def configure_index( 535 self, 536 name: str, 537 replicas: Optional[int] = None, 538 pod_type: Optional[Union[PodType, str]] = None, 539 deletion_protection: Optional[Union[DeletionProtection, str]] = None, 540 tags: Optional[Dict[str, str]] = None, 541 ): 542 """ 543 :param: name: the name of the Index 544 :param: replicas: the desired number of replicas, lowest value is 0. 545 :param: pod_type: the new pod_type for the index. To learn more about the 546 available pod types, please see [Understanding Indexes](https://docs.pinecone.io/docs/indexes) 547 :param: deletion_protection: If set to 'enabled', the index cannot be deleted. If 'disabled', the index can be deleted. 548 :param: tags: A dictionary of tags to apply to the index. Tags are key-value pairs that can be used to organize and manage indexes. To remove a tag, set the value to "". Tags passed to configure_index will be merged with existing tags and any with the value empty string will be removed. 549 550 This method is used to modify an index's configuration. It can be used to: 551 552 - Scale a pod-based index horizontally using `replicas` 553 - Scale a pod-based index vertically using `pod_type` 554 - Enable or disable deletion protection using `deletion_protection` 555 - Add, change, or remove tags using `tags` 556 557 ## Scaling pod-based indexes 558 559 To scale your pod-based index, you pass a `replicas` and/or `pod_type` param to the `configure_index` method. `pod_type` may be a string or a value from the `PodType` enum. 560 561 ```python 562 from pinecone import Pinecone, PodType 563 564 pc = Pinecone() 565 pc.configure_index( 566 name="my_index", 567 replicas=2, 568 pod_type=PodType.P1_X2 569 ) 570 ``` 571 572 After providing these new configurations, you must call `describe_index` to see the status of the index as the changes are applied. 573 574 ## Enabling or disabling deletion protection 575 576 To enable or disable deletion protection, pass the `deletion_protection` parameter to the `configure_index` method. When deletion protection 577 is enabled, the index cannot be deleted with the `delete_index` method. 578 579 ```python 580 from pinecone import Pinecone, DeletionProtection 581 582 pc = Pinecone() 583 584 # Enable deletion protection 585 pc.configure_index( 586 name="my_index", 587 deletion_protection=DeletionProtection.ENABLED 588 ) 589 590 # Call describe_index to see the change was applied. 591 assert pc.describe_index("my_index").deletion_protection == "enabled" 592 593 # Disable deletion protection 594 pc.configure_index( 595 name="my_index", 596 deletion_protection=DeletionProtection.DISABLED 597 ) 598 ``` 599 600 ## Adding, changing, or removing tags 601 602 To add, change, or remove tags, pass the `tags` parameter to the `configure_index` method. When tags are passed using `configure_index`, 603 they are merged with any existing tags already on the index. To remove a tag, set the value of the key to an empty string. 604 605 ```python 606 from pinecone import Pinecone 607 608 pc = Pinecone() 609 610 # Add a tag 611 pc.configure_index(name="my_index", tags={"environment": "staging"}) 612 613 # Change a tag 614 pc.configure_index(name="my_index", tags={"environment": "production"}) 615 616 # Remove a tag 617 pc.configure_index(name="my_index", tags={"environment": ""}) 618 619 # Call describe_index to view the tags are changed 620 print(pc.describe_index("my_index").tags) 621 ``` 622 """ 623 pass
Parameters
- name: the name of the Index
- replicas: the desired number of replicas, lowest value is 0.
- pod_type: the new pod_type for the index. To learn more about the available pod types, please see pinecone.control.pinecone.io/docs/indexes">Understanding Indexes
- deletion_protection: If set to 'enabled', the index cannot be deleted. If 'disabled', the index can be deleted.
- tags: A dictionary of tags to apply to the index. Tags are key-value pairs that can be used to organize and manage indexes. To remove a tag, set the value to "". Tags passed to configure_index will be merged with existing tags and any with the value empty string will be removed.
This method is used to modify an index's configuration. It can be used to:
- Scale a pod-based index horizontally using
replicas
- Scale a pod-based index vertically using
pod_type
- Enable or disable deletion protection using
deletion_protection
- Add, change, or remove tags using
tags
Scaling pod-based indexes
To scale your pod-based index, you pass a replicas
and/or pod_type
param to the configure_index
method. pod_type
may be a string or a value from the PodType
enum.
from pinecone import Pinecone, PodType
pc = Pinecone()
pc.configure_index(
name="my_index",
replicas=2,
pod_type=PodType.P1_X2
)
After providing these new configurations, you must call describe_index
to see the status of the index as the changes are applied.
Enabling or disabling deletion protection
To enable or disable deletion protection, pass the deletion_protection
parameter to the configure_index
method. When deletion protection
is enabled, the index cannot be deleted with the delete_index
method.
from pinecone import Pinecone, DeletionProtection
pc = Pinecone()
# Enable deletion protection
pc.configure_index(
name="my_index",
deletion_protection=DeletionProtection.ENABLED
)
# Call describe_index to see the change was applied.
assert pc.describe_index("my_index").deletion_protection == "enabled"
# Disable deletion protection
pc.configure_index(
name="my_index",
deletion_protection=DeletionProtection.DISABLED
)
Adding, changing, or removing tags
To add, change, or remove tags, pass the tags
parameter to the configure_index
method. When tags are passed using configure_index
,
they are merged with any existing tags already on the index. To remove a tag, set the value of the key to an empty string.
from pinecone import Pinecone
pc = Pinecone()
# Add a tag
pc.configure_index(name="my_index", tags={"environment": "staging"})
# Change a tag
pc.configure_index(name="my_index", tags={"environment": "production"})
# Remove a tag
pc.configure_index(name="my_index", tags={"environment": ""})
# Call describe_index to view the tags are changed
print(pc.describe_index("my_index").tags)
625 @abstractmethod 626 def create_collection(self, name: str, source: str): 627 """Create a collection from a pod-based index 628 629 :param name: Name of the collection 630 :param source: Name of the source index 631 """ 632 pass
Create a collection from a pod-based index
Parameters
- name: Name of the collection
- source: Name of the source index
634 @abstractmethod 635 def list_collections(self) -> CollectionList: 636 """List all collections 637 638 ```python 639 from pinecone import Pinecone 640 641 pc = Pinecone() 642 643 for collection in pc.list_collections(): 644 print(collection.name) 645 print(collection.source) 646 647 # You can also iterate specifically over the collection 648 # names with the .names() helper. 649 collection_name="my_collection" 650 for collection_name in pc.list_collections().names(): 651 print(collection_name) 652 ``` 653 """ 654 pass
List all collections
from pinecone import Pinecone
pc = Pinecone()
for collection in pc.list_collections():
print(collection.name)
print(collection.source)
# You can also iterate specifically over the collection
# names with the .names() helper.
collection_name="my_collection"
for collection_name in pc.list_collections().names():
print(collection_name)
656 @abstractmethod 657 def delete_collection(self, name: str) -> None: 658 """ 659 :param name: The name of the collection to delete. 660 661 Deletes a collection. 662 663 Deleting a collection is an irreversible operation. All data 664 in the collection will be lost. 665 666 This method tells Pinecone you would like to delete a collection, 667 but it takes a few moments to complete the operation. Use the 668 `describe_collection()` method to confirm that the collection 669 has been deleted. 670 671 ```python 672 from pinecone import Pinecone 673 674 pc = Pinecone() 675 676 pc.delete_collection(name="my_collection") 677 ``` 678 """ 679 pass
Parameters
- name: The name of the collection to delete.
Deletes a collection.
Deleting a collection is an irreversible operation. All data in the collection will be lost.
This method tells Pinecone you would like to delete a collection,
but it takes a few moments to complete the operation. Use the
describe_collection()
method to confirm that the collection
has been deleted.
from pinecone import Pinecone
pc = Pinecone()
pc.delete_collection(name="my_collection")
681 @abstractmethod 682 def describe_collection(self, name: str): 683 """Describes a collection. 684 :param: The name of the collection 685 :return: Description of the collection 686 687 ```python 688 from pinecone import Pinecone 689 690 pc = Pinecone() 691 692 description = pc.describe_collection("my_collection") 693 print(description.name) 694 print(description.source) 695 print(description.status) 696 print(description.size) 697 ``` 698 """ 699 pass
Describes a collection.
Parameters
- The name of the collection
Returns
Description of the collection
from pinecone import Pinecone
pc = Pinecone()
description = pc.describe_collection("my_collection")
print(description.name)
print(description.source)
print(description.status)
print(description.size)
701 @abstractmethod 702 def Index(self, name: str = "", host: str = "", **kwargs): 703 """ 704 :param name: The name of the index to target. If you specify the name of the index, the client will 705 fetch the host url from the Pinecone control plane. 706 :param host: The host url of the index to target. If you specify the host url, the client will use 707 the host url directly without making any additional calls to the control plane. 708 :param pool_threads: The number of threads to use when making parallel requests by calling index methods with optional kwarg async_req=True, or using methods that make use of thread-based parallelism automatically such as query_namespaces(). 709 :param connection_pool_maxsize: The maximum number of connections to keep in the connection pool. 710 :return: An instance of the `Index` class. 711 712 Target an index for data operations. 713 714 ### Target an index by host url 715 716 In production situations, you want to uspert or query your data as quickly 717 as possible. If you know in advance the host url of your index, you can 718 eliminate a round trip to the Pinecone control plane by specifying the 719 host of the index. If instead you pass the name of the index, the client 720 will need to make an additional call to api.pinecone.io to get the host url 721 before any data operations can take place. 722 723 ```python 724 import os 725 from pinecone import Pinecone 726 727 api_key = os.environ.get("PINECONE_API_KEY") 728 index_host = os.environ.get("PINECONE_INDEX_HOST") 729 730 pc = Pinecone(api_key=api_key) 731 index = pc.Index(host=index_host) 732 733 # Now you're ready to perform data operations 734 index.query(vector=[...], top_k=10) 735 ``` 736 737 To find your host url, you can use the describe_index method to call api.pinecone.io. 738 The host url is returned in the response. Or, alternatively, the 739 host is displayed in the Pinecone web console. 740 741 ```python 742 import os 743 from pinecone import Pinecone 744 745 pc = Pinecone( 746 api_key=os.environ.get("PINECONE_API_KEY") 747 ) 748 749 host = pc.describe_index('index-name').host 750 ``` 751 752 ### Target an index by name (not recommended for production) 753 754 For more casual usage, such as when you are playing and exploring with Pinecone 755 in a notebook setting, you can also target an index by name. If you use this 756 approach, the client may need to perform an extra call to the Pinecone control 757 plane to get the host url on your behalf to get the index host. 758 759 The client will cache the index host for future use whenever it is seen, so you 760 will only incur the overhead of only one call. But this approach is not 761 recommended for production usage because it introduces an unnecessary runtime 762 dependency on api.pinecone.io. 763 764 ```python 765 import os 766 from pinecone import Pinecone, ServerlessSpec 767 768 api_key = os.environ.get("PINECONE_API_KEY") 769 770 pc = Pinecone(api_key=api_key) 771 pc.create_index( 772 name='my_index', 773 dimension=1536, 774 metric='cosine', 775 spec=ServerlessSpec(cloud='aws', region='us-west-2') 776 ) 777 index = pc.Index('my_index') 778 779 # Now you're ready to perform data operations 780 index.query(vector=[...], top_k=10) 781 ``` 782 """ 783 pass
Parameters
- name: The name of the index to target. If you specify the name of the index, the client will fetch the host url from the Pinecone control plane.
- host: The host url of the index to target. If you specify the host url, the client will use the host url directly without making any additional calls to the control plane.
- pool_threads: The number of threads to use when making parallel requests by calling index methods with optional kwarg async_req=True, or using methods that make use of thread-based parallelism automatically such as query_namespaces().
- connection_pool_maxsize: The maximum number of connections to keep in the connection pool.
Returns
An instance of the
Index
class.
Target an index for data operations.
Target an index by host url
In production situations, you want to uspert or query your data as quickly as possible. If you know in advance the host url of your index, you can eliminate a round trip to the Pinecone control plane by specifying the host of the index. If instead you pass the name of the index, the client will need to make an additional call to api.pinecone.io to get the host url before any data operations can take place.
import os
from pinecone import Pinecone
api_key = os.environ.get("PINECONE_API_KEY")
index_host = os.environ.get("PINECONE_INDEX_HOST")
pc = Pinecone(api_key=api_key)
index = pc.Index(host=index_host)
# Now you're ready to perform data operations
index.query(vector=[...], top_k=10)
To find your host url, you can use the describe_index method to call api.pinecone.io. The host url is returned in the response. Or, alternatively, the host is displayed in the Pinecone web console.
import os
from pinecone import Pinecone
pc = Pinecone(
api_key=os.environ.get("PINECONE_API_KEY")
)
host = pc.describe_index('index-name').host
Target an index by name (not recommended for production)
For more casual usage, such as when you are playing and exploring with Pinecone in a notebook setting, you can also target an index by name. If you use this approach, the client may need to perform an extra call to the Pinecone control plane to get the host url on your behalf to get the index host.
The client will cache the index host for future use whenever it is seen, so you will only incur the overhead of only one call. But this approach is not recommended for production usage because it introduces an unnecessary runtime dependency on api.pinecone.io.
import os
from pinecone import Pinecone, ServerlessSpec
api_key = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=api_key)
pc.create_index(
name='my_index',
dimension=1536,
metric='cosine',
spec=ServerlessSpec(cloud='aws', region='us-west-2')
)
index = pc.Index('my_index')
# Now you're ready to perform data operations
index.query(vector=[...], top_k=10)
785 def IndexAsyncio(self, host: str, **kwargs): 786 """Build an asyncio-compatible Index object. 787 788 :param host: The host url of the index to target. You can find this url in the Pinecone 789 web console or by calling describe_index method of `Pinecone` or `PineconeAsyncio`. 790 791 :return: An instance of the `IndexAsyncio` class. 792 """ 793 pass
Build an asyncio-compatible Index object.
Parameters
- host: The host url of the index to target. You can find this url in the Pinecone
web console or by calling describe_index method of
Pinecone
orPineconeAsyncio
.
Returns
An instance of the
IndexAsyncio
class.