pinecone.data.index_asyncio

  1from pinecone.utils.tqdm import tqdm
  2
  3
  4import logging
  5import asyncio
  6import json
  7
  8from .index_asyncio_interface import IndexAsyncioInterface
  9from .query_results_aggregator import QueryResultsAggregator
 10from typing import Union, List, Optional, Dict, Any, Literal
 11
 12from pinecone.config import ConfigBuilder
 13
 14from pinecone.openapi_support import AsyncioApiClient
 15from pinecone.core.openapi.db_data.api.vector_operations_api import AsyncioVectorOperationsApi
 16from pinecone.core.openapi.db_data import API_VERSION
 17from pinecone.core.openapi.db_data.models import (
 18    QueryResponse,
 19    IndexDescription as DescribeIndexStatsResponse,
 20    UpsertRequest,
 21    UpsertResponse,
 22    DeleteRequest,
 23    ListResponse,
 24    SearchRecordsResponse,
 25)
 26
 27from ..utils import (
 28    setup_async_openapi_client,
 29    parse_non_empty_args,
 30    validate_and_convert_errors,
 31    filter_dict,
 32)
 33from .types import (
 34    SparseVectorTypedDict,
 35    VectorTypedDict,
 36    VectorMetadataTypedDict,
 37    VectorTuple,
 38    VectorTupleWithMetadata,
 39    FilterTypedDict,
 40    SearchQueryTypedDict,
 41    SearchRerankTypedDict,
 42)
 43from .dataclasses import Vector, SparseValues, FetchResponse, SearchQuery, SearchRerank
 44
 45from pinecone.openapi_support import OPENAPI_ENDPOINT_PARAMS
 46from .index import IndexRequestFactory
 47
 48from .vector_factory import VectorFactory
 49from .query_results_aggregator import QueryNamespacesResults
 50from .features.bulk_import import ImportFeatureMixinAsyncio
 51
 52
 53logger = logging.getLogger(__name__)
 54""" @private """
 55
 56__all__ = ["_IndexAsyncio"]
 57
 58_OPENAPI_ENDPOINT_PARAMS = (
 59    "_return_http_data_only",
 60    "_preload_content",
 61    "_request_timeout",
 62    "_check_input_type",
 63    "_check_return_type",
 64)
 65""" @private """
 66
 67
 68def parse_query_response(response: QueryResponse):
 69    if hasattr(response, "_data_store"):
 70        # I'm not sure, but I think this is no longer needed. At some point
 71        # in the past the query response returned "results" instead of matches
 72        # and then for some time it returned both keys even though "results"
 73        # was always empty. I'm leaving this here just in case.
 74        response._data_store.pop("results", None)
 75    return response
 76
 77
 78class _IndexAsyncio(IndexAsyncioInterface, ImportFeatureMixinAsyncio):
 79    """
 80    The `IndexAsyncio` class provides an asynchronous interface to interact with Pinecone indexes.
 81
 82    Like the `Index` class, it provides methods to upsert, delete, fetch, and query vectors in a Pinecone index.
 83
 84    The `IndexAsyncio` class is instantiated through a helper method of the `Pinecone` class. It is not meant to be instantiated directly.
 85    This is to ensure that configuration is handled consistently across all Pinecone objects.
 86
 87    ## Managing the async context
 88
 89    The `IndexAsyncio` class relies on an underlying `aiohttp` `ClientSession` to make asynchronous HTTP requests. To ensure that the session is properly closed, you
 90    should use the `async with` syntax when creating a `IndexAsyncio` object to use it as an async context manager. This will ensure that the session is properly
 91    closed when the context is exited.
 92
 93    ```python
 94    import asyncio
 95    from pinecone import Pinecone
 96
 97    async def main():
 98        pc = Pinecone(api_key='YOUR_API_KEY')
 99        async with pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io') as idx:
100            # Do async things
101            await idx.upsert(
102                vectors=[
103                    ...
104                ]
105            )
106
107    asyncio.run(main())
108    ```
109
110    As an alternative, if you prefer to avoid code with a nested appearance and are willing to manage cleanup yourself, you can await the `close()` method to close the session when you are done.
111
112    ```python
113    import asyncio
114    from pinecone import Pinecone
115
116    async def main():
117        pc = Pinecone(api_key='YOUR_API_KEY')
118        idx = pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io')
119
120        # Do async things
121        await idx.describe_index_stats()
122
123        # After you're done, you're responsible for calling this yourself
124        await pc.close()
125
126    asyncio.run(main())
127    ```
128
129    Failing to do this may result in error messages appearing from the underlyling aiohttp library.
130    """
131
132    def __init__(
133        self,
134        api_key: str,
135        host: str,
136        additional_headers: Optional[Dict[str, str]] = {},
137        openapi_config=None,
138        **kwargs,
139    ):
140        self.config = ConfigBuilder.build(
141            api_key=api_key, host=host, additional_headers=additional_headers, **kwargs
142        )
143        """ @private """
144        self._openapi_config = ConfigBuilder.build_openapi_config(self.config, openapi_config)
145        """ @private """
146
147        if kwargs.get("connection_pool_maxsize", None):
148            self._openapi_config.connection_pool_maxsize = kwargs.get("connection_pool_maxsize")
149
150        self._vector_api = setup_async_openapi_client(
151            api_client_klass=AsyncioApiClient,
152            api_klass=AsyncioVectorOperationsApi,
153            config=self.config,
154            openapi_config=self._openapi_config,
155            api_version=API_VERSION,
156        )
157        """ @private """
158
159        self._api_client = self._vector_api.api_client
160        """ @private """
161
162        # Pass the same api_client to the ImportFeatureMixinAsyncio
163        # This is important for async context management to work correctly
164        super().__init__(api_client=self._api_client)
165
166    async def __aenter__(self):
167        return self
168
169    async def __aexit__(self, exc_type, exc_value, traceback):
170        await self._api_client.close()
171
172    async def close(self):
173        """Cleanup resources used by the Pinecone Index client.
174
175        This method should be called when the client is no longer needed so that
176        it can cleanup the aioahttp session and other resources.
177
178        After close has been called, the client instance should not be used.
179
180        ```python
181        import asyncio
182        from pinecone import Pinecone
183
184        async def main():
185            pc = Pinecone()
186            idx = pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io')
187            await idx.upsert_records(
188                namespace='my-namespace',
189                records=[
190                    ...
191                ]
192            )
193
194            # Close the client when done
195            await idx.close()
196
197        asyncio.run(main())
198        ```
199
200        If you are using the client as a context manager, the close method is called automatically
201        when exiting.
202
203        ```python
204        import asyncio
205        from pinecone import Pinecone
206
207        async def main():
208            pc = Pinecone()
209            async with pc.IndexAscynio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io') as idx:
210                await idx.upsert_records(
211                    namespace='my-namespace',
212                    records=[
213                        ...
214                    ]
215                )
216
217        # No need to call close in this case because the "async with" syntax
218        # automatically calls close when exiting the block.
219        asyncio.run(main())
220        ```
221
222        """
223        await self._api_client.close()
224
225    @validate_and_convert_errors
226    async def upsert(
227        self,
228        vectors: Union[
229            List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]
230        ],
231        namespace: Optional[str] = None,
232        batch_size: Optional[int] = None,
233        show_progress: bool = True,
234        **kwargs,
235    ) -> UpsertResponse:
236        _check_type = kwargs.pop("_check_type", True)
237
238        if batch_size is None:
239            return await self._upsert_batch(vectors, namespace, _check_type, **kwargs)
240
241        if not isinstance(batch_size, int) or batch_size <= 0:
242            raise ValueError("batch_size must be a positive integer")
243
244        upsert_tasks = [
245            self._upsert_batch(vectors[i : i + batch_size], namespace, _check_type, **kwargs)
246            for i in range(0, len(vectors), batch_size)
247        ]
248
249        total_upserted = 0
250        with tqdm(total=len(vectors), desc="Upserted vectors", disable=not show_progress) as pbar:
251            for task in asyncio.as_completed(upsert_tasks):
252                res = await task
253                pbar.update(res.upserted_count)
254                total_upserted += res.upserted_count
255
256        return UpsertResponse(upserted_count=total_upserted)
257
258    @validate_and_convert_errors
259    async def _upsert_batch(
260        self,
261        vectors: Union[
262            List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]
263        ],
264        namespace: Optional[str],
265        _check_type: bool,
266        **kwargs,
267    ) -> UpsertResponse:
268        args_dict = parse_non_empty_args([("namespace", namespace)])
269
270        def vec_builder(v):
271            return VectorFactory.build(v, check_type=_check_type)
272
273        return await self._vector_api.upsert_vectors(
274            UpsertRequest(
275                vectors=list(map(vec_builder, vectors)),
276                **args_dict,
277                _check_type=_check_type,
278                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
279            ),
280            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
281        )
282
283    @validate_and_convert_errors
284    async def upsert_from_dataframe(
285        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
286    ):
287        raise NotImplementedError("upsert_from_dataframe is not implemented for asyncio")
288
289    @validate_and_convert_errors
290    async def delete(
291        self,
292        ids: Optional[List[str]] = None,
293        delete_all: Optional[bool] = None,
294        namespace: Optional[str] = None,
295        filter: Optional[FilterTypedDict] = None,
296        **kwargs,
297    ) -> Dict[str, Any]:
298        _check_type = kwargs.pop("_check_type", False)
299        args_dict = parse_non_empty_args(
300            [("ids", ids), ("delete_all", delete_all), ("namespace", namespace), ("filter", filter)]
301        )
302
303        return await self._vector_api.delete_vectors(
304            DeleteRequest(
305                **args_dict,
306                **{
307                    k: v
308                    for k, v in kwargs.items()
309                    if k not in _OPENAPI_ENDPOINT_PARAMS and v is not None
310                },
311                _check_type=_check_type,
312            ),
313            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
314        )
315
316    @validate_and_convert_errors
317    async def fetch(
318        self, ids: List[str], namespace: Optional[str] = None, **kwargs
319    ) -> FetchResponse:
320        args_dict = parse_non_empty_args([("namespace", namespace)])
321        return await self._vector_api.fetch_vectors(ids=ids, **args_dict, **kwargs)
322
323    @validate_and_convert_errors
324    async def query(
325        self,
326        *args,
327        top_k: int,
328        vector: Optional[List[float]] = None,
329        id: Optional[str] = None,
330        namespace: Optional[str] = None,
331        filter: Optional[FilterTypedDict] = None,
332        include_values: Optional[bool] = None,
333        include_metadata: Optional[bool] = None,
334        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
335        **kwargs,
336    ) -> QueryResponse:
337        response = await self._query(
338            *args,
339            top_k=top_k,
340            vector=vector,
341            id=id,
342            namespace=namespace,
343            filter=filter,
344            include_values=include_values,
345            include_metadata=include_metadata,
346            sparse_vector=sparse_vector,
347            **kwargs,
348        )
349        return parse_query_response(response)
350
351    async def _query(
352        self,
353        *args,
354        top_k: int,
355        vector: Optional[List[float]] = None,
356        id: Optional[str] = None,
357        namespace: Optional[str] = None,
358        filter: Optional[FilterTypedDict] = None,
359        include_values: Optional[bool] = None,
360        include_metadata: Optional[bool] = None,
361        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
362        **kwargs,
363    ) -> QueryResponse:
364        if len(args) > 0:
365            raise ValueError(
366                "Please use keyword arguments instead of positional arguments. Example: index.query(vector=[0.1, 0.2, 0.3], top_k=10, namespace='my_namespace')"
367            )
368
369        request = IndexRequestFactory.query_request(
370            top_k=top_k,
371            vector=vector,
372            id=id,
373            namespace=namespace,
374            filter=filter,
375            include_values=include_values,
376            include_metadata=include_metadata,
377            sparse_vector=sparse_vector,
378            **kwargs,
379        )
380        return await self._vector_api.query_vectors(
381            request, **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS}
382        )
383
384    @validate_and_convert_errors
385    async def query_namespaces(
386        self,
387        namespaces: List[str],
388        metric: Literal["cosine", "euclidean", "dotproduct"],
389        top_k: Optional[int] = None,
390        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
391        include_values: Optional[bool] = None,
392        include_metadata: Optional[bool] = None,
393        vector: Optional[List[float]] = None,
394        sparse_vector: Optional[
395            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
396        ] = None,
397        **kwargs,
398    ) -> QueryNamespacesResults:
399        if namespaces is None or len(namespaces) == 0:
400            raise ValueError("At least one namespace must be specified")
401        if sparse_vector is None and vector is not None and len(vector) == 0:
402            # If querying with a vector, it must not be empty
403            raise ValueError("Query vector must not be empty")
404
405        overall_topk = top_k if top_k is not None else 10
406        aggregator = QueryResultsAggregator(top_k=overall_topk, metric=metric)
407
408        target_namespaces = set(namespaces)  # dedup namespaces
409        tasks = [
410            self.query(
411                vector=vector,
412                namespace=ns,
413                top_k=overall_topk,
414                filter=filter,
415                include_values=include_values,
416                include_metadata=include_metadata,
417                sparse_vector=sparse_vector,
418                async_threadpool_executor=True,
419                _preload_content=False,
420                **kwargs,
421            )
422            for ns in target_namespaces
423        ]
424
425        for task in asyncio.as_completed(tasks):
426            raw_result = await task
427            response = json.loads(raw_result.data.decode("utf-8"))
428            aggregator.add_results(response)
429
430        final_results = aggregator.get_results()
431        return final_results
432
433    @validate_and_convert_errors
434    async def update(
435        self,
436        id: str,
437        values: Optional[List[float]] = None,
438        set_metadata: Optional[VectorMetadataTypedDict] = None,
439        namespace: Optional[str] = None,
440        sparse_values: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
441        **kwargs,
442    ) -> Dict[str, Any]:
443        return await self._vector_api.update_vector(
444            IndexRequestFactory.update_request(
445                id=id,
446                values=values,
447                set_metadata=set_metadata,
448                namespace=namespace,
449                sparse_values=sparse_values,
450                **kwargs,
451            ),
452            **self._openapi_kwargs(kwargs),
453        )
454
455    @validate_and_convert_errors
456    async def describe_index_stats(
457        self, filter: Optional[FilterTypedDict] = None, **kwargs
458    ) -> DescribeIndexStatsResponse:
459        return await self._vector_api.describe_index_stats(
460            IndexRequestFactory.describe_index_stats_request(filter, **kwargs),
461            **self._openapi_kwargs(kwargs),
462        )
463
464    @validate_and_convert_errors
465    async def list_paginated(
466        self,
467        prefix: Optional[str] = None,
468        limit: Optional[int] = None,
469        pagination_token: Optional[str] = None,
470        namespace: Optional[str] = None,
471        **kwargs,
472    ) -> ListResponse:
473        args_dict = IndexRequestFactory.list_paginated_args(
474            prefix=prefix,
475            limit=limit,
476            pagination_token=pagination_token,
477            namespace=namespace,
478            **kwargs,
479        )
480        return await self._vector_api.list_vectors(**args_dict, **kwargs)
481
482    @validate_and_convert_errors
483    async def list(self, **kwargs):
484        done = False
485        while not done:
486            results = await self.list_paginated(**kwargs)
487            if len(results.vectors) > 0:
488                yield [v.id for v in results.vectors]
489
490            if results.pagination:
491                kwargs.update({"pagination_token": results.pagination.next})
492            else:
493                done = True
494
495    async def upsert_records(self, namespace: str, records: List[Dict]):
496        args = IndexRequestFactory.upsert_records_args(namespace=namespace, records=records)
497        await self._vector_api.upsert_records_namespace(**args)
498
499    async def search(
500        self,
501        namespace: str,
502        query: Union[SearchQueryTypedDict, SearchQuery],
503        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
504        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
505    ) -> SearchRecordsResponse:
506        if namespace is None:
507            raise Exception("Namespace is required when searching records")
508
509        request = IndexRequestFactory.search_request(query=query, rerank=rerank, fields=fields)
510
511        return await self._vector_api.search_records_namespace(namespace, request)
512
513    async def search_records(
514        self,
515        namespace: str,
516        query: Union[SearchQueryTypedDict, SearchQuery],
517        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
518        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
519    ) -> SearchRecordsResponse:
520        return await self.search(namespace, query=query, rerank=rerank, fields=fields)
521
522    def _openapi_kwargs(self, kwargs: Dict[str, Any]) -> Dict[str, Any]:
523        return filter_dict(kwargs, OPENAPI_ENDPOINT_PARAMS)
 79class _IndexAsyncio(IndexAsyncioInterface, ImportFeatureMixinAsyncio):
 80    """
 81    The `IndexAsyncio` class provides an asynchronous interface to interact with Pinecone indexes.
 82
 83    Like the `Index` class, it provides methods to upsert, delete, fetch, and query vectors in a Pinecone index.
 84
 85    The `IndexAsyncio` class is instantiated through a helper method of the `Pinecone` class. It is not meant to be instantiated directly.
 86    This is to ensure that configuration is handled consistently across all Pinecone objects.
 87
 88    ## Managing the async context
 89
 90    The `IndexAsyncio` class relies on an underlying `aiohttp` `ClientSession` to make asynchronous HTTP requests. To ensure that the session is properly closed, you
 91    should use the `async with` syntax when creating a `IndexAsyncio` object to use it as an async context manager. This will ensure that the session is properly
 92    closed when the context is exited.
 93
 94    ```python
 95    import asyncio
 96    from pinecone import Pinecone
 97
 98    async def main():
 99        pc = Pinecone(api_key='YOUR_API_KEY')
100        async with pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io') as idx:
101            # Do async things
102            await idx.upsert(
103                vectors=[
104                    ...
105                ]
106            )
107
108    asyncio.run(main())
109    ```
110
111    As an alternative, if you prefer to avoid code with a nested appearance and are willing to manage cleanup yourself, you can await the `close()` method to close the session when you are done.
112
113    ```python
114    import asyncio
115    from pinecone import Pinecone
116
117    async def main():
118        pc = Pinecone(api_key='YOUR_API_KEY')
119        idx = pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io')
120
121        # Do async things
122        await idx.describe_index_stats()
123
124        # After you're done, you're responsible for calling this yourself
125        await pc.close()
126
127    asyncio.run(main())
128    ```
129
130    Failing to do this may result in error messages appearing from the underlyling aiohttp library.
131    """
132
133    def __init__(
134        self,
135        api_key: str,
136        host: str,
137        additional_headers: Optional[Dict[str, str]] = {},
138        openapi_config=None,
139        **kwargs,
140    ):
141        self.config = ConfigBuilder.build(
142            api_key=api_key, host=host, additional_headers=additional_headers, **kwargs
143        )
144        """ @private """
145        self._openapi_config = ConfigBuilder.build_openapi_config(self.config, openapi_config)
146        """ @private """
147
148        if kwargs.get("connection_pool_maxsize", None):
149            self._openapi_config.connection_pool_maxsize = kwargs.get("connection_pool_maxsize")
150
151        self._vector_api = setup_async_openapi_client(
152            api_client_klass=AsyncioApiClient,
153            api_klass=AsyncioVectorOperationsApi,
154            config=self.config,
155            openapi_config=self._openapi_config,
156            api_version=API_VERSION,
157        )
158        """ @private """
159
160        self._api_client = self._vector_api.api_client
161        """ @private """
162
163        # Pass the same api_client to the ImportFeatureMixinAsyncio
164        # This is important for async context management to work correctly
165        super().__init__(api_client=self._api_client)
166
167    async def __aenter__(self):
168        return self
169
170    async def __aexit__(self, exc_type, exc_value, traceback):
171        await self._api_client.close()
172
173    async def close(self):
174        """Cleanup resources used by the Pinecone Index client.
175
176        This method should be called when the client is no longer needed so that
177        it can cleanup the aioahttp session and other resources.
178
179        After close has been called, the client instance should not be used.
180
181        ```python
182        import asyncio
183        from pinecone import Pinecone
184
185        async def main():
186            pc = Pinecone()
187            idx = pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io')
188            await idx.upsert_records(
189                namespace='my-namespace',
190                records=[
191                    ...
192                ]
193            )
194
195            # Close the client when done
196            await idx.close()
197
198        asyncio.run(main())
199        ```
200
201        If you are using the client as a context manager, the close method is called automatically
202        when exiting.
203
204        ```python
205        import asyncio
206        from pinecone import Pinecone
207
208        async def main():
209            pc = Pinecone()
210            async with pc.IndexAscynio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io') as idx:
211                await idx.upsert_records(
212                    namespace='my-namespace',
213                    records=[
214                        ...
215                    ]
216                )
217
218        # No need to call close in this case because the "async with" syntax
219        # automatically calls close when exiting the block.
220        asyncio.run(main())
221        ```
222
223        """
224        await self._api_client.close()
225
226    @validate_and_convert_errors
227    async def upsert(
228        self,
229        vectors: Union[
230            List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]
231        ],
232        namespace: Optional[str] = None,
233        batch_size: Optional[int] = None,
234        show_progress: bool = True,
235        **kwargs,
236    ) -> UpsertResponse:
237        _check_type = kwargs.pop("_check_type", True)
238
239        if batch_size is None:
240            return await self._upsert_batch(vectors, namespace, _check_type, **kwargs)
241
242        if not isinstance(batch_size, int) or batch_size <= 0:
243            raise ValueError("batch_size must be a positive integer")
244
245        upsert_tasks = [
246            self._upsert_batch(vectors[i : i + batch_size], namespace, _check_type, **kwargs)
247            for i in range(0, len(vectors), batch_size)
248        ]
249
250        total_upserted = 0
251        with tqdm(total=len(vectors), desc="Upserted vectors", disable=not show_progress) as pbar:
252            for task in asyncio.as_completed(upsert_tasks):
253                res = await task
254                pbar.update(res.upserted_count)
255                total_upserted += res.upserted_count
256
257        return UpsertResponse(upserted_count=total_upserted)
258
259    @validate_and_convert_errors
260    async def _upsert_batch(
261        self,
262        vectors: Union[
263            List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]
264        ],
265        namespace: Optional[str],
266        _check_type: bool,
267        **kwargs,
268    ) -> UpsertResponse:
269        args_dict = parse_non_empty_args([("namespace", namespace)])
270
271        def vec_builder(v):
272            return VectorFactory.build(v, check_type=_check_type)
273
274        return await self._vector_api.upsert_vectors(
275            UpsertRequest(
276                vectors=list(map(vec_builder, vectors)),
277                **args_dict,
278                _check_type=_check_type,
279                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
280            ),
281            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
282        )
283
284    @validate_and_convert_errors
285    async def upsert_from_dataframe(
286        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
287    ):
288        raise NotImplementedError("upsert_from_dataframe is not implemented for asyncio")
289
290    @validate_and_convert_errors
291    async def delete(
292        self,
293        ids: Optional[List[str]] = None,
294        delete_all: Optional[bool] = None,
295        namespace: Optional[str] = None,
296        filter: Optional[FilterTypedDict] = None,
297        **kwargs,
298    ) -> Dict[str, Any]:
299        _check_type = kwargs.pop("_check_type", False)
300        args_dict = parse_non_empty_args(
301            [("ids", ids), ("delete_all", delete_all), ("namespace", namespace), ("filter", filter)]
302        )
303
304        return await self._vector_api.delete_vectors(
305            DeleteRequest(
306                **args_dict,
307                **{
308                    k: v
309                    for k, v in kwargs.items()
310                    if k not in _OPENAPI_ENDPOINT_PARAMS and v is not None
311                },
312                _check_type=_check_type,
313            ),
314            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
315        )
316
317    @validate_and_convert_errors
318    async def fetch(
319        self, ids: List[str], namespace: Optional[str] = None, **kwargs
320    ) -> FetchResponse:
321        args_dict = parse_non_empty_args([("namespace", namespace)])
322        return await self._vector_api.fetch_vectors(ids=ids, **args_dict, **kwargs)
323
324    @validate_and_convert_errors
325    async def query(
326        self,
327        *args,
328        top_k: int,
329        vector: Optional[List[float]] = None,
330        id: Optional[str] = None,
331        namespace: Optional[str] = None,
332        filter: Optional[FilterTypedDict] = None,
333        include_values: Optional[bool] = None,
334        include_metadata: Optional[bool] = None,
335        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
336        **kwargs,
337    ) -> QueryResponse:
338        response = await self._query(
339            *args,
340            top_k=top_k,
341            vector=vector,
342            id=id,
343            namespace=namespace,
344            filter=filter,
345            include_values=include_values,
346            include_metadata=include_metadata,
347            sparse_vector=sparse_vector,
348            **kwargs,
349        )
350        return parse_query_response(response)
351
352    async def _query(
353        self,
354        *args,
355        top_k: int,
356        vector: Optional[List[float]] = None,
357        id: Optional[str] = None,
358        namespace: Optional[str] = None,
359        filter: Optional[FilterTypedDict] = None,
360        include_values: Optional[bool] = None,
361        include_metadata: Optional[bool] = None,
362        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
363        **kwargs,
364    ) -> QueryResponse:
365        if len(args) > 0:
366            raise ValueError(
367                "Please use keyword arguments instead of positional arguments. Example: index.query(vector=[0.1, 0.2, 0.3], top_k=10, namespace='my_namespace')"
368            )
369
370        request = IndexRequestFactory.query_request(
371            top_k=top_k,
372            vector=vector,
373            id=id,
374            namespace=namespace,
375            filter=filter,
376            include_values=include_values,
377            include_metadata=include_metadata,
378            sparse_vector=sparse_vector,
379            **kwargs,
380        )
381        return await self._vector_api.query_vectors(
382            request, **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS}
383        )
384
385    @validate_and_convert_errors
386    async def query_namespaces(
387        self,
388        namespaces: List[str],
389        metric: Literal["cosine", "euclidean", "dotproduct"],
390        top_k: Optional[int] = None,
391        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
392        include_values: Optional[bool] = None,
393        include_metadata: Optional[bool] = None,
394        vector: Optional[List[float]] = None,
395        sparse_vector: Optional[
396            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
397        ] = None,
398        **kwargs,
399    ) -> QueryNamespacesResults:
400        if namespaces is None or len(namespaces) == 0:
401            raise ValueError("At least one namespace must be specified")
402        if sparse_vector is None and vector is not None and len(vector) == 0:
403            # If querying with a vector, it must not be empty
404            raise ValueError("Query vector must not be empty")
405
406        overall_topk = top_k if top_k is not None else 10
407        aggregator = QueryResultsAggregator(top_k=overall_topk, metric=metric)
408
409        target_namespaces = set(namespaces)  # dedup namespaces
410        tasks = [
411            self.query(
412                vector=vector,
413                namespace=ns,
414                top_k=overall_topk,
415                filter=filter,
416                include_values=include_values,
417                include_metadata=include_metadata,
418                sparse_vector=sparse_vector,
419                async_threadpool_executor=True,
420                _preload_content=False,
421                **kwargs,
422            )
423            for ns in target_namespaces
424        ]
425
426        for task in asyncio.as_completed(tasks):
427            raw_result = await task
428            response = json.loads(raw_result.data.decode("utf-8"))
429            aggregator.add_results(response)
430
431        final_results = aggregator.get_results()
432        return final_results
433
434    @validate_and_convert_errors
435    async def update(
436        self,
437        id: str,
438        values: Optional[List[float]] = None,
439        set_metadata: Optional[VectorMetadataTypedDict] = None,
440        namespace: Optional[str] = None,
441        sparse_values: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
442        **kwargs,
443    ) -> Dict[str, Any]:
444        return await self._vector_api.update_vector(
445            IndexRequestFactory.update_request(
446                id=id,
447                values=values,
448                set_metadata=set_metadata,
449                namespace=namespace,
450                sparse_values=sparse_values,
451                **kwargs,
452            ),
453            **self._openapi_kwargs(kwargs),
454        )
455
456    @validate_and_convert_errors
457    async def describe_index_stats(
458        self, filter: Optional[FilterTypedDict] = None, **kwargs
459    ) -> DescribeIndexStatsResponse:
460        return await self._vector_api.describe_index_stats(
461            IndexRequestFactory.describe_index_stats_request(filter, **kwargs),
462            **self._openapi_kwargs(kwargs),
463        )
464
465    @validate_and_convert_errors
466    async def list_paginated(
467        self,
468        prefix: Optional[str] = None,
469        limit: Optional[int] = None,
470        pagination_token: Optional[str] = None,
471        namespace: Optional[str] = None,
472        **kwargs,
473    ) -> ListResponse:
474        args_dict = IndexRequestFactory.list_paginated_args(
475            prefix=prefix,
476            limit=limit,
477            pagination_token=pagination_token,
478            namespace=namespace,
479            **kwargs,
480        )
481        return await self._vector_api.list_vectors(**args_dict, **kwargs)
482
483    @validate_and_convert_errors
484    async def list(self, **kwargs):
485        done = False
486        while not done:
487            results = await self.list_paginated(**kwargs)
488            if len(results.vectors) > 0:
489                yield [v.id for v in results.vectors]
490
491            if results.pagination:
492                kwargs.update({"pagination_token": results.pagination.next})
493            else:
494                done = True
495
496    async def upsert_records(self, namespace: str, records: List[Dict]):
497        args = IndexRequestFactory.upsert_records_args(namespace=namespace, records=records)
498        await self._vector_api.upsert_records_namespace(**args)
499
500    async def search(
501        self,
502        namespace: str,
503        query: Union[SearchQueryTypedDict, SearchQuery],
504        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
505        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
506    ) -> SearchRecordsResponse:
507        if namespace is None:
508            raise Exception("Namespace is required when searching records")
509
510        request = IndexRequestFactory.search_request(query=query, rerank=rerank, fields=fields)
511
512        return await self._vector_api.search_records_namespace(namespace, request)
513
514    async def search_records(
515        self,
516        namespace: str,
517        query: Union[SearchQueryTypedDict, SearchQuery],
518        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
519        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
520    ) -> SearchRecordsResponse:
521        return await self.search(namespace, query=query, rerank=rerank, fields=fields)
522
523    def _openapi_kwargs(self, kwargs: Dict[str, Any]) -> Dict[str, Any]:
524        return filter_dict(kwargs, OPENAPI_ENDPOINT_PARAMS)

The IndexAsyncio class provides an asynchronous interface to interact with Pinecone indexes.

Like the Index class, it provides methods to upsert, delete, fetch, and query vectors in a Pinecone index.

The IndexAsyncio class is instantiated through a helper method of the Pinecone class. It is not meant to be instantiated directly. This is to ensure that configuration is handled consistently across all Pinecone objects.

Managing the async context

The IndexAsyncio class relies on an underlying aiohttp ClientSession to make asynchronous HTTP requests. To ensure that the session is properly closed, you should use the async with syntax when creating a IndexAsyncio object to use it as an async context manager. This will ensure that the session is properly closed when the context is exited.

import asyncio
from pinecone import Pinecone

async def main():
    pc = Pinecone(api_key='YOUR_API_KEY')
    async with pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io') as idx:
        # Do async things
        await idx.upsert(
            vectors=[
                ...
            ]
        )

asyncio.run(main())

As an alternative, if you prefer to avoid code with a nested appearance and are willing to manage cleanup yourself, you can await the close() method to close the session when you are done.

import asyncio
from pinecone import Pinecone

async def main():
    pc = Pinecone(api_key='YOUR_API_KEY')
    idx = pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io')

    # Do async things
    await idx.describe_index_stats()

    # After you're done, you're responsible for calling this yourself
    await pc.close()

asyncio.run(main())

Failing to do this may result in error messages appearing from the underlyling aiohttp library.

_IndexAsyncio( api_key: str, host: str, additional_headers: Optional[Dict[str, str]] = {}, openapi_config=None, **kwargs)
133    def __init__(
134        self,
135        api_key: str,
136        host: str,
137        additional_headers: Optional[Dict[str, str]] = {},
138        openapi_config=None,
139        **kwargs,
140    ):
141        self.config = ConfigBuilder.build(
142            api_key=api_key, host=host, additional_headers=additional_headers, **kwargs
143        )
144        """ @private """
145        self._openapi_config = ConfigBuilder.build_openapi_config(self.config, openapi_config)
146        """ @private """
147
148        if kwargs.get("connection_pool_maxsize", None):
149            self._openapi_config.connection_pool_maxsize = kwargs.get("connection_pool_maxsize")
150
151        self._vector_api = setup_async_openapi_client(
152            api_client_klass=AsyncioApiClient,
153            api_klass=AsyncioVectorOperationsApi,
154            config=self.config,
155            openapi_config=self._openapi_config,
156            api_version=API_VERSION,
157        )
158        """ @private """
159
160        self._api_client = self._vector_api.api_client
161        """ @private """
162
163        # Pass the same api_client to the ImportFeatureMixinAsyncio
164        # This is important for async context management to work correctly
165        super().__init__(api_client=self._api_client)
async def close(self):
173    async def close(self):
174        """Cleanup resources used by the Pinecone Index client.
175
176        This method should be called when the client is no longer needed so that
177        it can cleanup the aioahttp session and other resources.
178
179        After close has been called, the client instance should not be used.
180
181        ```python
182        import asyncio
183        from pinecone import Pinecone
184
185        async def main():
186            pc = Pinecone()
187            idx = pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io')
188            await idx.upsert_records(
189                namespace='my-namespace',
190                records=[
191                    ...
192                ]
193            )
194
195            # Close the client when done
196            await idx.close()
197
198        asyncio.run(main())
199        ```
200
201        If you are using the client as a context manager, the close method is called automatically
202        when exiting.
203
204        ```python
205        import asyncio
206        from pinecone import Pinecone
207
208        async def main():
209            pc = Pinecone()
210            async with pc.IndexAscynio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io') as idx:
211                await idx.upsert_records(
212                    namespace='my-namespace',
213                    records=[
214                        ...
215                    ]
216                )
217
218        # No need to call close in this case because the "async with" syntax
219        # automatically calls close when exiting the block.
220        asyncio.run(main())
221        ```
222
223        """
224        await self._api_client.close()

Cleanup resources used by the Pinecone Index client.

This method should be called when the client is no longer needed so that it can cleanup the aioahttp session and other resources.

After close has been called, the client instance should not be used.

import asyncio
from pinecone import Pinecone

async def main():
    pc = Pinecone()
    idx = pc.IndexAsyncio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io')
    await idx.upsert_records(
        namespace='my-namespace',
        records=[
            ...
        ]
    )

    # Close the client when done
    await idx.close()

asyncio.run(main())

If you are using the client as a context manager, the close method is called automatically when exiting.

import asyncio
from pinecone import Pinecone

async def main():
    pc = Pinecone()
    async with pc.IndexAscynio(host='example-index-dojoi3u.svc.eu-west1-gcp.pinecone.io') as idx:
        await idx.upsert_records(
            namespace='my-namespace',
            records=[
                ...
            ]
        )

# No need to call close in this case because the "async with" syntax
# automatically calls close when exiting the block.
asyncio.run(main())
@validate_and_convert_errors
async def upsert( self, vectors: Union[List[pinecone.data.dataclasses.vector.Vector], List[Tuple[str, List[float]]], List[Tuple[str, List[float], Dict[str, Union[str, int, float, List[str], List[int], List[float]]]]], List[pinecone.data.types.vector_typed_dict.VectorTypedDict]], namespace: Optional[str] = None, batch_size: Optional[int] = None, show_progress: bool = True, **kwargs) -> pinecone.core.openapi.db_data.model.upsert_response.UpsertResponse:
226    @validate_and_convert_errors
227    async def upsert(
228        self,
229        vectors: Union[
230            List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]
231        ],
232        namespace: Optional[str] = None,
233        batch_size: Optional[int] = None,
234        show_progress: bool = True,
235        **kwargs,
236    ) -> UpsertResponse:
237        _check_type = kwargs.pop("_check_type", True)
238
239        if batch_size is None:
240            return await self._upsert_batch(vectors, namespace, _check_type, **kwargs)
241
242        if not isinstance(batch_size, int) or batch_size <= 0:
243            raise ValueError("batch_size must be a positive integer")
244
245        upsert_tasks = [
246            self._upsert_batch(vectors[i : i + batch_size], namespace, _check_type, **kwargs)
247            for i in range(0, len(vectors), batch_size)
248        ]
249
250        total_upserted = 0
251        with tqdm(total=len(vectors), desc="Upserted vectors", disable=not show_progress) as pbar:
252            for task in asyncio.as_completed(upsert_tasks):
253                res = await task
254                pbar.update(res.upserted_count)
255                total_upserted += res.upserted_count
256
257        return UpsertResponse(upserted_count=total_upserted)
Arguments:
  • vectors (Union[List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]]): A list of vectors to upsert.
  • namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
  • batch_size (int): The number of vectors to upsert in each batch. If not specified, all vectors will be upserted in a single batch. [optional]
  • show_progress (bool): Whether to show a progress bar using tqdm. Applied only if batch_size is provided. Default is True.
Returns:

UpsertResponse, includes the number of vectors upserted.

The upsert operation writes vectors into a namespace. If a new value is upserted for an existing vector id, it will overwrite the previous value.

To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel

Upserting dense vectors

Note: the dimension of each dense vector must match the dimension of the index.

A vector can be represented in a variety of ways.

import asyncio
from pinecone import Pinecone, Vector

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        # A Vector object
        await idx.upsert(
            namespace = 'my-namespace',
            vectors = [
                Vector(id='id1', values=[0.1, 0.2, 0.3, 0.4], metadata={'metadata_key': 'metadata_value'}),
            ]
        )

        # A vector tuple
        await idx.upsert(
            namespace = 'my-namespace',
            vectors = [
                ('id1', [0.1, 0.2, 0.3, 0.4]),
            ]
        )

        # A vector tuple with metadata
        await idx.upsert(
            namespace = 'my-namespace',
            vectors = [
                ('id1', [0.1, 0.2, 0.3, 0.4], {'metadata_key': 'metadata_value'}),
            ]
        )

        # A vector dictionary
        await idx.upsert(
            namespace = 'my-namespace',
            vectors = [
                {"id": 1, "values": [0.1, 0.2, 0.3, 0.4], "metadata": {"metadata_key": "metadata_value"}},
            ]

asyncio.run(main())

Upserting sparse vectors

import asyncio
from pinecone import Pinecone, Vector, SparseValues

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        # A Vector object
        await idx.upsert(
            namespace = 'my-namespace',
            vectors = [
                Vector(id='id1', sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4])),
            ]
        )

        # A dictionary
        await idx.upsert(
            namespace = 'my-namespace',
            vectors = [
                {"id": 1, "sparse_values": {"indices": [1, 2], "values": [0.2, 0.4]}},
            ]
        )

asyncio.run(main())

Batch upsert

If you have a large number of vectors, you can upsert them in batches.

import asyncio
from pinecone import Pinecone, Vector, SparseValues

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:

    await idx.upsert(
        namespace = 'my-namespace',
        vectors = [
            {'id': 'id1', 'values': [0.1, 0.2, 0.3, 0.4]},
            {'id': 'id2', 'values': [0.2, 0.3, 0.4, 0.5]},
            {'id': 'id3', 'values': [0.3, 0.4, 0.5, 0.6]},
            {'id': 'id4', 'values': [0.4, 0.5, 0.6, 0.7]},
            {'id': 'id5', 'values': [0.5, 0.6, 0.7, 0.8]},
            # More vectors here
        ],
        batch_size = 50
    )

asyncio.run(main())

Visual progress bar with tqdm

To see a progress bar when upserting in batches, you will need to separately install the tqdm package. If tqdm is present, the client will detect and use it to display progress when show_progress=True.

@validate_and_convert_errors
async def upsert_from_dataframe( self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True):
284    @validate_and_convert_errors
285    async def upsert_from_dataframe(
286        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
287    ):
288        raise NotImplementedError("upsert_from_dataframe is not implemented for asyncio")

This method has not been implemented yet for the IndexAsyncio class.

@validate_and_convert_errors
async def delete( self, ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, namespace: Optional[str] = None, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, **kwargs) -> Dict[str, Any]:
290    @validate_and_convert_errors
291    async def delete(
292        self,
293        ids: Optional[List[str]] = None,
294        delete_all: Optional[bool] = None,
295        namespace: Optional[str] = None,
296        filter: Optional[FilterTypedDict] = None,
297        **kwargs,
298    ) -> Dict[str, Any]:
299        _check_type = kwargs.pop("_check_type", False)
300        args_dict = parse_non_empty_args(
301            [("ids", ids), ("delete_all", delete_all), ("namespace", namespace), ("filter", filter)]
302        )
303
304        return await self._vector_api.delete_vectors(
305            DeleteRequest(
306                **args_dict,
307                **{
308                    k: v
309                    for k, v in kwargs.items()
310                    if k not in _OPENAPI_ENDPOINT_PARAMS and v is not None
311                },
312                _check_type=_check_type,
313            ),
314            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
315        )
Arguments:
  • ids (List[str]): Vector ids to delete [optional]
  • delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional] Default is False.
  • namespace (str): The namespace to delete vectors from [optional] If not specified, the default namespace is used.
  • filter (Dict[str, Union[str, float, int, bool, List, dict]]): If specified, the metadata filter here will be used to select the vectors to delete. This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True. See https://www.pinecone.io/docs/metadata-filtering/.. [optional]

The Delete operation deletes vectors from the index, from a single namespace.

No error is raised if the vector id does not exist.

Note: For any delete call, if namespace is not specified, the default namespace "" is used. Since the delete operation does not error when ids are not present, this means you may not receive an error if you delete from the wrong namespace.

Delete can occur in the following mutual exclusive ways:

  1. Delete by ids from a single namespace
  2. Delete all vectors from a single namespace by setting delete_all to True
  3. Delete all vectors from a single namespace by specifying a metadata filter (note that for this option delete all must be set to False)

API reference: https://docs.pinecone.io/reference/delete_post

import asyncio
from pinecone import Pinecone, Vector, SparseValues

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        # Delete specific ids
        await idx.delete(
            ids=['id1', 'id2'],
            namespace='my_namespace'
        )

        # Delete everything in a namespace
        await idx.delete(
            delete_all=True,
            namespace='my_namespace'
        )

        # Delete by metadata filter
        await idx.delete(
            filter={'key': 'value'},
            namespace='my_namespace'
        )

asyncio.run(main())

Returns: An empty dictionary if the delete operation was successful.

@validate_and_convert_errors
async def fetch( self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> pinecone.data.dataclasses.fetch_response.FetchResponse:
317    @validate_and_convert_errors
318    async def fetch(
319        self, ids: List[str], namespace: Optional[str] = None, **kwargs
320    ) -> FetchResponse:
321        args_dict = parse_non_empty_args([("namespace", namespace)])
322        return await self._vector_api.fetch_vectors(ids=ids, **args_dict, **kwargs)

The fetch operation looks up and returns vectors, by ID, from a single namespace. The returned vectors include the vector data and/or metadata.

API reference: https://docs.pinecone.io/reference/fetch

import asyncio
from pinecone import Pinecone, Vector, SparseValues

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        # Fetch specific ids in namespace
        fetched = await idx.fetch(
            ids=['id1', 'id2'],
            namespace='my_namespace'
        )
        for vec_id in fetched.vectors:
            vector = fetched.vectors[vec_id]
            print(vector.id)
            print(vector.metadata)
            print(vector.values)

asyncio.run(main())
Arguments:
  • ids (List[str]): The vector IDs to fetch.
  • namespace (str): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]

Returns: FetchResponse object which contains the list of Vector objects, and namespace name.

@validate_and_convert_errors
async def query( self, *args, top_k: int, vector: Optional[List[float]] = None, id: Optional[str] = None, namespace: Optional[str] = None, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, include_values: Optional[bool] = None, include_metadata: Optional[bool] = None, sparse_vector: Union[pinecone.data.dataclasses.sparse_values.SparseValues, pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict, NoneType] = None, **kwargs) -> pinecone.core.openapi.db_data.model.query_response.QueryResponse:
324    @validate_and_convert_errors
325    async def query(
326        self,
327        *args,
328        top_k: int,
329        vector: Optional[List[float]] = None,
330        id: Optional[str] = None,
331        namespace: Optional[str] = None,
332        filter: Optional[FilterTypedDict] = None,
333        include_values: Optional[bool] = None,
334        include_metadata: Optional[bool] = None,
335        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
336        **kwargs,
337    ) -> QueryResponse:
338        response = await self._query(
339            *args,
340            top_k=top_k,
341            vector=vector,
342            id=id,
343            namespace=namespace,
344            filter=filter,
345            include_values=include_values,
346            include_metadata=include_metadata,
347            sparse_vector=sparse_vector,
348            **kwargs,
349        )
350        return parse_query_response(response)

The Query operation searches a namespace, using a query vector. It retrieves the ids of the most similar items in a namespace, along with their similarity scores.

API reference: https://docs.pinecone.io/reference/query

Querying with dense vectors

import asyncio
from pinecone import Pinecone, Vector, SparseValues

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        query_embedding = [0.1, 0.2, 0.3, ...] # An embedding that matches the index dimension

        # Query by vector values
        results = await idx.query(
            vector=query_embedding,
            top_k=10,
            filter={'genre': {"$eq": "drama"}}, # Optionally filter by metadata
            namespace='my_namespace',
            include_values=False,
            include_metadata=True
        )

        # Query using vector id (the values from this stored vector will be used to query)
        results = await idx.query(
            id='1',
            top_k=10,
            filter={"year": {"$gt": 2000}},
            namespace='my_namespace',
        )

asyncio.run(main())

Query with sparse vectors

import asyncio
from pinecone import Pinecone, Vector, SparseValues

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        query_embedding = [0.1, 0.2, 0.3, ...] # An embedding that matches the index dimension

        # Query by vector values
        results = await idx.query(
            vector=query_embedding,
            top_k=10,
            filter={'genre': {"$eq": "drama"}}, # Optionally filter by metadata
            namespace='my_namespace',
            include_values=False,
            include_metadata=True
        )

        # Query using vector id (the values from this stored vector will be used to query)
        results = await idx.query(
            id='1',
            top_k=10,
            filter={"year": {"$gt": 2000}},
            namespace='my_namespace',
        )

asyncio.run(main())
Examples:
>>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
>>> index.query(id='id1', top_k=10, namespace='my_namespace')
>>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
>>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
>>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
>>>             top_k=10, namespace='my_namespace')
>>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
>>>             top_k=10, namespace='my_namespace')
Arguments:
  • vector (List[float]): The query vector. This should be the same length as the dimension of the index being queried. Each query() request can contain only one of the parameters id or vector.. [optional]
  • id (str): The unique ID of the vector to be used as a query vector. Each query() request can contain only one of the parameters vector or id. [optional]
  • top_k (int): The number of results to return for each query. Must be an integer greater than 1.
  • namespace (str): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
  • filter (Dict[str, Union[str, float, int, bool, List, dict]): The filter to apply. You can use vector metadata to limit your search. See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
  • include_values (bool): Indicates whether vector values are included in the response. If omitted the server will use the default value of False [optional]
  • include_metadata (bool): Indicates whether metadata is included in the response as well as the ids. If omitted the server will use the default value of False [optional]
  • sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector. Expected to be either a SparseValues object or a dict of the form: {'indices': List[int], 'values': List[float]}, where the lists each have the same length.

Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects, and namespace name.

@validate_and_convert_errors
async def query_namespaces( self, namespaces: List[str], metric: Literal['cosine', 'euclidean', 'dotproduct'], top_k: Optional[int] = None, filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None, include_values: Optional[bool] = None, include_metadata: Optional[bool] = None, vector: Optional[List[float]] = None, sparse_vector: Union[pinecone.data.dataclasses.sparse_values.SparseValues, Dict[str, Union[List[float], List[int]]], NoneType] = None, **kwargs) -> pinecone.data.query_results_aggregator.QueryNamespacesResults:
385    @validate_and_convert_errors
386    async def query_namespaces(
387        self,
388        namespaces: List[str],
389        metric: Literal["cosine", "euclidean", "dotproduct"],
390        top_k: Optional[int] = None,
391        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
392        include_values: Optional[bool] = None,
393        include_metadata: Optional[bool] = None,
394        vector: Optional[List[float]] = None,
395        sparse_vector: Optional[
396            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
397        ] = None,
398        **kwargs,
399    ) -> QueryNamespacesResults:
400        if namespaces is None or len(namespaces) == 0:
401            raise ValueError("At least one namespace must be specified")
402        if sparse_vector is None and vector is not None and len(vector) == 0:
403            # If querying with a vector, it must not be empty
404            raise ValueError("Query vector must not be empty")
405
406        overall_topk = top_k if top_k is not None else 10
407        aggregator = QueryResultsAggregator(top_k=overall_topk, metric=metric)
408
409        target_namespaces = set(namespaces)  # dedup namespaces
410        tasks = [
411            self.query(
412                vector=vector,
413                namespace=ns,
414                top_k=overall_topk,
415                filter=filter,
416                include_values=include_values,
417                include_metadata=include_metadata,
418                sparse_vector=sparse_vector,
419                async_threadpool_executor=True,
420                _preload_content=False,
421                **kwargs,
422            )
423            for ns in target_namespaces
424        ]
425
426        for task in asyncio.as_completed(tasks):
427            raw_result = await task
428            response = json.loads(raw_result.data.decode("utf-8"))
429            aggregator.add_results(response)
430
431        final_results = aggregator.get_results()
432        return final_results

The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.

Arguments:
  • vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
  • namespaces (List[str]): The list of namespaces to query.
  • top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
  • filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
  • include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
  • include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
  • sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
Returns:

QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.

Examples:

import asyncio
from pinecone import Pinecone

async def main():
    pc = Pinecone(api_key="your-api-key")
    idx = pc.IndexAsyncio(
        host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io",
    )

    query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
    combined_results = await idx.query_namespaces(
        vector=query_vec,
        namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
        top_k=10,
        filter={'genre': {"$eq": "drama"}},
        include_values=True,
        include_metadata=True
    )
    for vec in combined_results.matches:
        print(vec.id, vec.score)
    print(combined_results.usage)

    await idx.close()

asyncio.run(main())
@validate_and_convert_errors
async def update( self, id: str, values: Optional[List[float]] = None, set_metadata: Optional[Dict[str, Union[str, int, float, List[str], List[int], List[float]]]] = None, namespace: Optional[str] = None, sparse_values: Union[pinecone.data.dataclasses.sparse_values.SparseValues, pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict, NoneType] = None, **kwargs) -> Dict[str, Any]:
434    @validate_and_convert_errors
435    async def update(
436        self,
437        id: str,
438        values: Optional[List[float]] = None,
439        set_metadata: Optional[VectorMetadataTypedDict] = None,
440        namespace: Optional[str] = None,
441        sparse_values: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
442        **kwargs,
443    ) -> Dict[str, Any]:
444        return await self._vector_api.update_vector(
445            IndexRequestFactory.update_request(
446                id=id,
447                values=values,
448                set_metadata=set_metadata,
449                namespace=namespace,
450                sparse_values=sparse_values,
451                **kwargs,
452            ),
453            **self._openapi_kwargs(kwargs),
454        )

The Update operation updates vector in a namespace.

Arguments:
  • id (str): Vector's unique id.
  • values (List[float]): vector values to set. [optional]
  • set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]): metadata to set for vector. [optional]
  • namespace (str): Namespace name where to update the vector.. [optional]
  • sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector. Expected to be either a SparseValues object or a dict of the form: {'indices': List[int], 'values': List[float]} where the lists each have the same length.

If a value is included, it will overwrite the previous value. If a set_metadata is included, the values of the fields specified in it will be added or overwrite the previous value.

API reference: https://docs.pinecone.io/reference/update

Examples:

import asyncio
from pinecone import Pinecone, Vector, SparseValues

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        # Update vector values
        await idx.update(
            id='id1',
            values=[0.1, 0.2, 0.3, ...],
            namespace='my_namespace'
        )

        # Update metadata
        await idx.update(
            id='id1',
            set_metadata={'key': 'value'},
            namespace='my_namespace'
        )

        # Update sparse values
        await idx.update(
            id='id1',
            sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
            namespace='my_namespace'
        )

        # Update sparse values with SparseValues object
        await idx.update(
            id='id1',
            sparse_values=SparseValues(indices=[234781, 5432], values=[0.2, 0.4]),
            namespace='my_namespace'
        )

asyncio.run(main())
@validate_and_convert_errors
async def describe_index_stats( self, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, **kwargs) -> pinecone.core.openapi.db_data.model.index_description.IndexDescription:
456    @validate_and_convert_errors
457    async def describe_index_stats(
458        self, filter: Optional[FilterTypedDict] = None, **kwargs
459    ) -> DescribeIndexStatsResponse:
460        return await self._vector_api.describe_index_stats(
461            IndexRequestFactory.describe_index_stats_request(filter, **kwargs),
462            **self._openapi_kwargs(kwargs),
463        )

The DescribeIndexStats operation returns statistics about the index's contents. For example: The vector count per namespace and the number of dimensions.

API reference: https://docs.pinecone.io/reference/describe_index_stats_post

Arguments:
  • filter (Dict[str, Union[str, float, int, bool, List, dict]]):
  • If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
  • See https: //www.pinecone.io/docs/metadata-filtering/.. [optional]

Returns: DescribeIndexStatsResponse object which contains stats about the index.

import asyncio
from pinecone import Pinecone, Vector, SparseValues

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        print(await idx.describe_index_stats())

asyncio.run(main())
@validate_and_convert_errors
async def list_paginated( self, prefix: Optional[str] = None, limit: Optional[int] = None, pagination_token: Optional[str] = None, namespace: Optional[str] = None, **kwargs) -> pinecone.core.openapi.db_data.model.list_response.ListResponse:
465    @validate_and_convert_errors
466    async def list_paginated(
467        self,
468        prefix: Optional[str] = None,
469        limit: Optional[int] = None,
470        pagination_token: Optional[str] = None,
471        namespace: Optional[str] = None,
472        **kwargs,
473    ) -> ListResponse:
474        args_dict = IndexRequestFactory.list_paginated_args(
475            prefix=prefix,
476            limit=limit,
477            pagination_token=pagination_token,
478            namespace=namespace,
479            **kwargs,
480        )
481        return await self._vector_api.list_vectors(**args_dict, **kwargs)

The list_paginated operation finds vectors based on an id prefix within a single namespace. It returns matching ids in a paginated form, with a pagination token to fetch the next page of results. This id list can then be passed to fetch or delete operations, depending on your use case.

Consider using the list method to avoid having to handle pagination tokens manually.

Examples:
>>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
>>> [v.id for v in results.vectors]
['99', '990', '991', '992', '993']
>>> results.pagination.next
eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
>>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
Arguments:
  • prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will be used with the effect of listing all ids in a namespace [optional]
  • limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
  • pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned in the response if additional results are available. [optional]
  • namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]

Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.

@validate_and_convert_errors
async def list(self, **kwargs):
483    @validate_and_convert_errors
484    async def list(self, **kwargs):
485        done = False
486        while not done:
487            results = await self.list_paginated(**kwargs)
488            if len(results.vectors) > 0:
489                yield [v.id for v in results.vectors]
490
491            if results.pagination:
492                kwargs.update({"pagination_token": results.pagination.next})
493            else:
494                done = True

The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your behalf.

Examples:
>>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
>>>     print(ids)
['99', '990', '991', '992', '993']
['994', '995', '996', '997', '998']
['999']
Arguments:
  • prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will be used with the effect of listing all ids in a namespace [optional]
  • limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
  • pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned in the response if additional results are available. [optional]
  • namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
async def upsert_records(self, namespace: str, records: List[Dict]):
496    async def upsert_records(self, namespace: str, records: List[Dict]):
497        args = IndexRequestFactory.upsert_records_args(namespace=namespace, records=records)
498        await self._vector_api.upsert_records_namespace(**args)
Parameters
  • namespace: The namespace of the index to upsert records to.
  • records: The records to upsert into the index.

Upsert records to a namespace. A record is a dictionary that contains eitiher an id or _id field along with other fields that will be stored as metadata. The id or _id field is used as the unique identifier for the record. At least one field in the record should correspond to a field mapping in the index's embed configuration.

When records are upserted, Pinecone converts mapped fields into embeddings and upserts them into the specified namespacce of the index.

import asyncio
from pinecone import (
    Pinecone,
    CloudProvider,
    AwsRegion,
    EmbedModel
    IndexEmbed
)

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        # upsert records
        await idx.upsert_records(
            namespace="my-namespace",
            records=[
                {
                    "_id": "test1",
                    "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
                },
                {
                    "_id": "test2",
                    "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
                },
                {
                    "_id": "test3",
                    "my_text_field": "Many people enjoy eating apples as a healthy snack.",
                },
                {
                    "_id": "test4",
                    "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
                },
                {
                    "_id": "test5",
                    "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
                },
                {
                    "_id": "test6",
                    "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
                },
            ],
        )

        from pinecone import SearchQuery, SearchRerank, RerankModel

        # search for similar records
        response = await idx.search_records(
            namespace="my-namespace",
            query=SearchQuery(
                inputs={
                    "text": "Apple corporation",
                },
                top_k=3,
            ),
            rerank=SearchRerank(
                model=RerankModel.Bge_Reranker_V2_M3,
                rank_fields=["my_text_field"],
                top_n=3,
            ),
        )

asyncio.run(main())
async def search( self, namespace: str, query: Union[pinecone.data.types.search_query_typed_dict.SearchQueryTypedDict, pinecone.data.dataclasses.search_query.SearchQuery], rerank: Union[pinecone.data.types.search_rerank_typed_dict.SearchRerankTypedDict, pinecone.data.dataclasses.search_rerank.SearchRerank, NoneType] = None, fields: Optional[List[str]] = ['*']) -> pinecone.core.openapi.db_data.model.search_records_response.SearchRecordsResponse:
500    async def search(
501        self,
502        namespace: str,
503        query: Union[SearchQueryTypedDict, SearchQuery],
504        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
505        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
506    ) -> SearchRecordsResponse:
507        if namespace is None:
508            raise Exception("Namespace is required when searching records")
509
510        request = IndexRequestFactory.search_request(query=query, rerank=rerank, fields=fields)
511
512        return await self._vector_api.search_records_namespace(namespace, request)
Parameters
  • namespace: The namespace in the index to search.
  • query: The SearchQuery to use for the search.
  • rerank: The SearchRerank to use with the search request.
Returns

The records that match the search.

Search for records.

This operation converts a query to a vector embedding and then searches a namespace. You can optionally provide a reranking operation as part of the search.

import asyncio
from pinecone import (
    Pinecone,
    CloudProvider,
    AwsRegion,
    EmbedModel
    IndexEmbed
)

async def main():
    pc = Pinecone()
    async with pc.IndexAsyncio(host="example-dojoi3u.svc.aped-4627-b74a.pinecone.io") as idx:
        # upsert records
        await idx.upsert_records(
            namespace="my-namespace",
            records=[
                {
                    "_id": "test1",
                    "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
                },
                {
                    "_id": "test2",
                    "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
                },
                {
                    "_id": "test3",
                    "my_text_field": "Many people enjoy eating apples as a healthy snack.",
                },
                {
                    "_id": "test4",
                    "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
                },
                {
                    "_id": "test5",
                    "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
                },
                {
                    "_id": "test6",
                    "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
                },
            ],
        )

        from pinecone import SearchQuery, SearchRerank, RerankModel

        # search for similar records
        response = await idx.search_records(
            namespace="my-namespace",
            query=SearchQuery(
                inputs={
                    "text": "Apple corporation",
                },
                top_k=3,
            ),
            rerank=SearchRerank(
                model=RerankModel.Bge_Reranker_V2_M3,
                rank_fields=["my_text_field"],
                top_n=3,
            ),
        )

asyncio.run(main())
async def search_records( self, namespace: str, query: Union[pinecone.data.types.search_query_typed_dict.SearchQueryTypedDict, pinecone.data.dataclasses.search_query.SearchQuery], rerank: Union[pinecone.data.types.search_rerank_typed_dict.SearchRerankTypedDict, pinecone.data.dataclasses.search_rerank.SearchRerank, NoneType] = None, fields: Optional[List[str]] = ['*']) -> pinecone.core.openapi.db_data.model.search_records_response.SearchRecordsResponse:
514    async def search_records(
515        self,
516        namespace: str,
517        query: Union[SearchQueryTypedDict, SearchQuery],
518        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
519        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
520    ) -> SearchRecordsResponse:
521        return await self.search(namespace, query=query, rerank=rerank, fields=fields)

Alias of the search() method.