pinecone.data.interfaces

  1from abc import ABC, abstractmethod
  2from typing import Union, List, Optional, Dict, Any
  3
  4from pinecone.core.openapi.db_data.models import (
  5    FetchResponse,
  6    QueryResponse,
  7    IndexDescription as DescribeIndexStatsResponse,
  8    UpsertResponse,
  9    Vector,
 10    ListResponse,
 11    SparseValues,
 12    SearchRecordsResponse,
 13)
 14from .query_results_aggregator import QueryNamespacesResults
 15from multiprocessing.pool import ApplyResult
 16from .types import (
 17    VectorTypedDict,
 18    SparseVectorTypedDict,
 19    VectorMetadataTypedDict,
 20    FilterTypedDict,
 21    VectorTuple,
 22    VectorTupleWithMetadata,
 23    SearchQueryTypedDict,
 24    SearchRerankTypedDict,
 25)
 26from .dataclasses import SearchQuery, SearchRerank
 27
 28
 29class IndexInterface(ABC):
 30    @abstractmethod
 31    def upsert(
 32        self,
 33        vectors: Union[
 34            List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]
 35        ],
 36        namespace: Optional[str] = None,
 37        batch_size: Optional[int] = None,
 38        show_progress: bool = True,
 39        **kwargs,
 40    ) -> UpsertResponse:
 41        """
 42        Args:
 43            vectors (Union[List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]]): A list of vectors to upsert.
 44            namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
 45            batch_size (int): The number of vectors to upsert in each batch.
 46                               If not specified, all vectors will be upserted in a single batch. [optional]
 47            show_progress (bool): Whether to show a progress bar using tqdm.
 48                                  Applied only if batch_size is provided. Default is True.
 49
 50        Returns:
 51            `UpsertResponse`, includes the number of vectors upserted.
 52
 53
 54        The upsert operation writes vectors into a namespace.
 55        If a new value is upserted for an existing vector id, it will overwrite the previous value.
 56
 57        To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel
 58
 59        ## Upserting dense vectors
 60
 61        **Note:** the dimension of each dense vector must match the dimension of the index.
 62
 63        A vector can be represented in a variety of ways.
 64
 65        ```python
 66        from pinecone import Pinecone, Vector
 67
 68        pc = Pinecone()
 69        idx = pc.Index("index-name")
 70
 71        # A Vector object
 72        idx.upsert(
 73            namespace = 'my-namespace',
 74            vectors = [
 75                Vector(id='id1', values=[0.1, 0.2, 0.3, 0.4], metadata={'metadata_key': 'metadata_value'}),
 76            ]
 77        )
 78
 79        # A vector tuple
 80        idx.upsert(
 81            namespace = 'my-namespace',
 82            vectors = [
 83                ('id1', [0.1, 0.2, 0.3, 0.4]),
 84            ]
 85        )
 86
 87        # A vector tuple with metadata
 88        idx.upsert(
 89            namespace = 'my-namespace',
 90            vectors = [
 91                ('id1', [0.1, 0.2, 0.3, 0.4], {'metadata_key': 'metadata_value'}),
 92            ]
 93        )
 94
 95        # A vector dictionary
 96        idx.upsert(
 97            namespace = 'my-namespace',
 98            vectors = [
 99                {"id": 1, "values": [0.1, 0.2, 0.3, 0.4], "metadata": {"metadata_key": "metadata_value"}},
100            ]
101        ```
102
103        ## Upserting sparse vectors
104
105        ```python
106        from pinecone import Pinecone, Vector, SparseValues
107
108        pc = Pinecone()
109        idx = pc.Index("index-name")
110
111        # A Vector object
112        idx.upsert(
113            namespace = 'my-namespace',
114            vectors = [
115                Vector(id='id1', sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4])),
116            ]
117        )
118
119        # A dictionary
120        idx.upsert(
121            namespace = 'my-namespace',
122            vectors = [
123                {"id": 1, "sparse_values": {"indices": [1, 2], "values": [0.2, 0.4]}},
124            ]
125        )
126        ```
127
128        ## Batch upsert
129
130        If you have a large number of vectors, you can upsert them in batches.
131
132        ```python
133        from pinecone import Pinecone, Vector
134
135        pc = Pinecone()
136        idx = pc.Index("index-name")
137
138        idx.upsert(
139            namespace = 'my-namespace',
140            vectors = [
141                {'id': 'id1', 'values': [0.1, 0.2, 0.3, 0.4]},
142                {'id': 'id2', 'values': [0.2, 0.3, 0.4, 0.5]},
143                {'id': 'id3', 'values': [0.3, 0.4, 0.5, 0.6]},
144                {'id': 'id4', 'values': [0.4, 0.5, 0.6, 0.7]},
145                {'id': 'id5', 'values': [0.5, 0.6, 0.7, 0.8]},
146                # More vectors here
147            ],
148            batch_size = 50
149        )
150        ```
151
152        ## Visual progress bar with tqdm
153
154        To see a progress bar when upserting in batches, you will need to separately install the `tqdm` package.
155        If `tqdm` is present, the client will detect and use it to display progress when `show_progress=True`.
156        """
157        pass
158
159    @abstractmethod
160    def upsert_from_dataframe(
161        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
162    ):
163        """Upserts a dataframe into the index.
164
165        Args:
166            df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
167            namespace: The namespace to upsert into.
168            batch_size: The number of rows to upsert in a single batch.
169            show_progress: Whether to show a progress bar.
170        """
171        pass
172
173    @abstractmethod
174    def upsert_records(self, namespace: str, records: List[Dict]):
175        """
176        :param namespace: The namespace of the index to upsert records to.
177        :type namespace: str, required
178        :param records: The records to upsert into the index.
179        :type records: List[Dict], required
180
181        Upsert records to a namespace. A record is a dictionary that contains eitiher an `id` or `_id`
182        field along with other fields that will be stored as metadata. The `id` or `_id` field is used
183        as the unique identifier for the record. At least one field in the record should correspond to
184        a field mapping in the index's embed configuration.
185
186        When records are upserted, Pinecone converts mapped fields into embeddings and upserts them into
187        the specified namespacce of the index.
188
189        ```python
190        from pinecone import (
191            Pinecone,
192            CloudProvider,
193            AwsRegion,
194            EmbedModel
195            IndexEmbed
196        )
197
198        pc = Pinecone(api_key="<<PINECONE_API_KEY>>")
199
200        # Create an index for your embedding model
201        index_model = pc.create_index_for_model(
202            name="my-model-index",
203            cloud=CloudProvider.AWS,
204            region=AwsRegion.US_WEST_2,
205            embed=IndexEmbed(
206                model=EmbedModel.Multilingual_E5_Large,
207                field_map={"text": "my_text_field"}
208            )
209        )
210
211        # Instantiate the index client
212        idx = pc.Index(host=index_model.host)
213
214        # upsert records
215        idx.upsert_records(
216            namespace="my-namespace",
217            records=[
218                {
219                    "_id": "test1",
220                    "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
221                },
222                {
223                    "_id": "test2",
224                    "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
225                },
226                {
227                    "_id": "test3",
228                    "my_text_field": "Many people enjoy eating apples as a healthy snack.",
229                },
230                {
231                    "_id": "test4",
232                    "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
233                },
234                {
235                    "_id": "test5",
236                    "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
237                },
238                {
239                    "_id": "test6",
240                    "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
241                },
242            ],
243        )
244
245        from pinecone import SearchQuery, SearchRerank, RerankModel
246
247        # search for similar records
248        response = idx.search_records(
249            namespace="my-namespace",
250            query=SearchQuery(
251                inputs={
252                    "text": "Apple corporation",
253                },
254                top_k=3,
255            ),
256            rerank=SearchRerank(
257                model=RerankModel.Bge_Reranker_V2_M3,
258                rank_fields=["my_text_field"],
259                top_n=3,
260            ),
261        )
262        ```
263        """
264        pass
265
266    @abstractmethod
267    def search(
268        self,
269        namespace: str,
270        query: Union[SearchQueryTypedDict, SearchQuery],
271        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
272        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
273    ) -> SearchRecordsResponse:
274        """
275        :param namespace: The namespace in the index to search.
276        :type namespace: str, required
277        :param query: The SearchQuery to use for the search.
278        :type query: Union[Dict, SearchQuery], required
279        :param rerank: The SearchRerank to use with the search request.
280        :type rerank: Union[Dict, SearchRerank], optional
281        :return: The records that match the search.
282
283        Search for records.
284
285        This operation converts a query to a vector embedding and then searches a namespace. You
286        can optionally provide a reranking operation as part of the search.
287
288        ```python
289        from pinecone import (
290            Pinecone,
291            CloudProvider,
292            AwsRegion,
293            EmbedModel
294            IndexEmbed
295        )
296
297        pc = Pinecone(api_key="<<PINECONE_API_KEY>>")
298
299        # Create an index for your embedding model
300        index_model = pc.create_index_for_model(
301            name="my-model-index",
302            cloud=CloudProvider.AWS,
303            region=AwsRegion.US_WEST_2,
304            embed=IndexEmbed(
305                model=EmbedModel.Multilingual_E5_Large,
306                field_map={"text": "my_text_field"}
307            )
308        )
309
310        # Instantiate the index client
311        idx = pc.Index(host=index_model.host)
312
313        # upsert records
314        idx.upsert_records(
315            namespace="my-namespace",
316            records=[
317                {
318                    "_id": "test1",
319                    "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
320                },
321                {
322                    "_id": "test2",
323                    "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
324                },
325                {
326                    "_id": "test3",
327                    "my_text_field": "Many people enjoy eating apples as a healthy snack.",
328                },
329                {
330                    "_id": "test4",
331                    "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
332                },
333                {
334                    "_id": "test5",
335                    "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
336                },
337                {
338                    "_id": "test6",
339                    "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
340                },
341            ],
342        )
343
344        from pinecone import SearchQuery, SearchRerank, RerankModel
345
346        # search for similar records
347        response = idx.search_records(
348            namespace="my-namespace",
349            query=SearchQuery(
350                inputs={
351                    "text": "Apple corporation",
352                },
353                top_k=3,
354            ),
355            rerank=SearchRerank(
356                model=RerankModel.Bge_Reranker_V2_M3,
357                rank_fields=["my_text_field"],
358                top_n=3,
359            ),
360        )
361        ```
362        """
363        pass
364
365    @abstractmethod
366    def search_records(
367        self,
368        namespace: str,
369        query: Union[SearchQueryTypedDict, SearchQuery],
370        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
371        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
372    ) -> SearchRecordsResponse:
373        """Alias of the search() method."""
374        pass
375
376    @abstractmethod
377    def delete(
378        self,
379        ids: Optional[List[str]] = None,
380        delete_all: Optional[bool] = None,
381        namespace: Optional[str] = None,
382        filter: Optional[FilterTypedDict] = None,
383        **kwargs,
384    ) -> Dict[str, Any]:
385        """
386        Args:
387            ids (List[str]): Vector ids to delete [optional]
388            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional]
389                                Default is False.
390            namespace (str): The namespace to delete vectors from [optional]
391                            If not specified, the default namespace is used.
392            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
393                    If specified, the metadata filter here will be used to select the vectors to delete.
394                    This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True.
395                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
396
397
398        The Delete operation deletes vectors from the index, from a single namespace.
399
400        No error is raised if the vector id does not exist.
401
402        Note: For any delete call, if namespace is not specified, the default namespace `""` is used.
403        Since the delete operation does not error when ids are not present, this means you may not receive
404        an error if you delete from the wrong namespace.
405
406        Delete can occur in the following mutual exclusive ways:
407        1. Delete by ids from a single namespace
408        2. Delete all vectors from a single namespace by setting delete_all to True
409        3. Delete all vectors from a single namespace by specifying a metadata filter
410            (note that for this option delete all must be set to False)
411
412        API reference: https://docs.pinecone.io/reference/delete_post
413
414        Examples:
415            >>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
416            >>> index.delete(delete_all=True, namespace='my_namespace')
417            >>> index.delete(filter={'key': 'value'}, namespace='my_namespace')
418
419
420          Returns: An empty dictionary if the delete operation was successful.
421        """
422        pass
423
424    @abstractmethod
425    def fetch(self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> FetchResponse:
426        """
427        The fetch operation looks up and returns vectors, by ID, from a single namespace.
428        The returned vectors include the vector data and/or metadata.
429
430        API reference: https://docs.pinecone.io/reference/fetch
431
432        Examples:
433            >>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
434            >>> index.fetch(ids=['id1', 'id2'])
435
436        Args:
437            ids (List[str]): The vector IDs to fetch.
438            namespace (str): The namespace to fetch vectors from.
439                             If not specified, the default namespace is used. [optional]
440
441        Returns: FetchResponse object which contains the list of Vector objects, and namespace name.
442        """
443        pass
444
445    @abstractmethod
446    def query(
447        self,
448        *args,
449        top_k: int,
450        vector: Optional[List[float]] = None,
451        id: Optional[str] = None,
452        namespace: Optional[str] = None,
453        filter: Optional[FilterTypedDict] = None,
454        include_values: Optional[bool] = None,
455        include_metadata: Optional[bool] = None,
456        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
457        **kwargs,
458    ) -> Union[QueryResponse, ApplyResult]:
459        """
460        The Query operation searches a namespace, using a query vector.
461        It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
462
463        API reference: https://docs.pinecone.io/reference/query
464
465        Examples:
466            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
467            >>> index.query(id='id1', top_k=10, namespace='my_namespace')
468            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
469            >>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
470            >>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
471            >>>             top_k=10, namespace='my_namespace')
472            >>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
473            >>>             top_k=10, namespace='my_namespace')
474
475        Args:
476            vector (List[float]): The query vector. This should be the same length as the dimension of the index
477                                  being queried. Each `query()` request can contain only one of the parameters
478                                  `id` or `vector`.. [optional]
479            id (str): The unique ID of the vector to be used as a query vector.
480                      Each `query()` request can contain only one of the parameters
481                      `vector` or  `id`. [optional]
482            top_k (int): The number of results to return for each query. Must be an integer greater than 1.
483            namespace (str): The namespace to query vectors from.
484                             If not specified, the default namespace is used. [optional]
485            filter (Dict[str, Union[str, float, int, bool, List, dict]):
486                    The filter to apply. You can use vector metadata to limit your search.
487                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
488            include_values (bool): Indicates whether vector values are included in the response.
489                                   If omitted the server will use the default value of False [optional]
490            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.
491                                     If omitted the server will use the default value of False  [optional]
492            sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector.
493                            Expected to be either a SparseValues object or a dict of the form:
494                             {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
495
496        Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects,
497                 and namespace name.
498        """
499        pass
500
501    @abstractmethod
502    def query_namespaces(
503        self,
504        vector: List[float],
505        namespaces: List[str],
506        top_k: Optional[int] = None,
507        filter: Optional[FilterTypedDict] = None,
508        include_values: Optional[bool] = None,
509        include_metadata: Optional[bool] = None,
510        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
511        **kwargs,
512    ) -> QueryNamespacesResults:
513        """The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.
514
515        Since several asynchronous calls are made on your behalf when calling this method, you will need to tune the pool_threads and connection_pool_maxsize parameter of the Index constructor to suite your workload.
516
517        Examples:
518
519        ```python
520        from pinecone import Pinecone
521
522        pc = Pinecone(api_key="your-api-key")
523        index = pc.Index(
524            host="index-name",
525            pool_threads=32,
526            connection_pool_maxsize=32
527        )
528
529        query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
530        combined_results = index.query_namespaces(
531            vector=query_vec,
532            namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
533            metric="cosine",
534            top_k=10,
535            filter={'genre': {"$eq": "drama"}},
536            include_values=True,
537            include_metadata=True
538        )
539        for vec in combined_results.matches:
540            print(vec.id, vec.score)
541        print(combined_results.usage)
542        ```
543
544        Args:
545            vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
546            namespaces (List[str]): The list of namespaces to query.
547            top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
548            metric (str): Must be one of 'cosine', 'euclidean', 'dotproduct'. This is needed in order to merge results across namespaces, since the interpretation of score depends on the index metric type.
549            filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
550            include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
551            include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
552            sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
553
554        Returns:
555            QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.
556        """
557        pass
558
559    @abstractmethod
560    def update(
561        self,
562        id: str,
563        values: Optional[List[float]] = None,
564        set_metadata: Optional[VectorMetadataTypedDict] = None,
565        namespace: Optional[str] = None,
566        sparse_values: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
567        **kwargs,
568    ) -> Dict[str, Any]:
569        """
570        The Update operation updates vector in a namespace.
571        If a value is included, it will overwrite the previous value.
572        If a set_metadata is included,
573        the values of the fields specified in it will be added or overwrite the previous value.
574
575        API reference: https://docs.pinecone.io/reference/update
576
577        Examples:
578            >>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
579            >>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace')
580            >>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
581            >>>              namespace='my_namespace')
582            >>> index.update(id='id1', values=[1, 2, 3], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]),
583            >>>              namespace='my_namespace')
584
585        Args:
586            id (str): Vector's unique id.
587            values (List[float]): vector values to set. [optional]
588            set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]):
589                metadata to set for vector. [optional]
590            namespace (str): Namespace name where to update the vector.. [optional]
591            sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector.
592                           Expected to be either a SparseValues object or a dict of the form:
593                           {'indices': List[int], 'values': List[float]} where the lists each have the same length.
594
595
596        Returns: An empty dictionary if the update was successful.
597        """
598        pass
599
600    @abstractmethod
601    def describe_index_stats(
602        self, filter: Optional[FilterTypedDict] = None, **kwargs
603    ) -> DescribeIndexStatsResponse:
604        """
605        The DescribeIndexStats operation returns statistics about the index's contents.
606        For example: The vector count per namespace and the number of dimensions.
607
608        API reference: https://docs.pinecone.io/reference/describe_index_stats_post
609
610        Examples:
611            >>> index.describe_index_stats()
612            >>> index.describe_index_stats(filter={'key': 'value'})
613
614        Args:
615            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
616            If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
617            See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
618
619        Returns: DescribeIndexStatsResponse object which contains stats about the index.
620        """
621        pass
622
623    @abstractmethod
624    def list_paginated(
625        self,
626        prefix: Optional[str] = None,
627        limit: Optional[int] = None,
628        pagination_token: Optional[str] = None,
629        namespace: Optional[str] = None,
630        **kwargs,
631    ) -> ListResponse:
632        """
633        The list_paginated operation finds vectors based on an id prefix within a single namespace.
634        It returns matching ids in a paginated form, with a pagination token to fetch the next page of results.
635        This id list can then be passed to fetch or delete operations, depending on your use case.
636
637        Consider using the `list` method to avoid having to handle pagination tokens manually.
638
639        Examples:
640            >>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
641            >>> [v.id for v in results.vectors]
642            ['99', '990', '991', '992', '993']
643            >>> results.pagination.next
644            eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
645            >>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
646
647        Args:
648            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
649                                    be used with the effect of listing all ids in a namespace [optional]
650            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
651            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
652                in the response if additional results are available. [optional]
653            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
654
655        Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.
656        """
657        pass
658
659    @abstractmethod
660    def list(self, **kwargs):
661        """
662        The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields
663        a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your
664        behalf.
665
666        Examples:
667            >>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
668            >>>     print(ids)
669            ['99', '990', '991', '992', '993']
670            ['994', '995', '996', '997', '998']
671            ['999']
672
673        Args:
674            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
675                                    be used with the effect of listing all ids in a namespace [optional]
676            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
677            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
678                in the response if additional results are available. [optional]
679            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
680        """
681        pass
class IndexInterface(abc.ABC):
 30class IndexInterface(ABC):
 31    @abstractmethod
 32    def upsert(
 33        self,
 34        vectors: Union[
 35            List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]
 36        ],
 37        namespace: Optional[str] = None,
 38        batch_size: Optional[int] = None,
 39        show_progress: bool = True,
 40        **kwargs,
 41    ) -> UpsertResponse:
 42        """
 43        Args:
 44            vectors (Union[List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]]): A list of vectors to upsert.
 45            namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
 46            batch_size (int): The number of vectors to upsert in each batch.
 47                               If not specified, all vectors will be upserted in a single batch. [optional]
 48            show_progress (bool): Whether to show a progress bar using tqdm.
 49                                  Applied only if batch_size is provided. Default is True.
 50
 51        Returns:
 52            `UpsertResponse`, includes the number of vectors upserted.
 53
 54
 55        The upsert operation writes vectors into a namespace.
 56        If a new value is upserted for an existing vector id, it will overwrite the previous value.
 57
 58        To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel
 59
 60        ## Upserting dense vectors
 61
 62        **Note:** the dimension of each dense vector must match the dimension of the index.
 63
 64        A vector can be represented in a variety of ways.
 65
 66        ```python
 67        from pinecone import Pinecone, Vector
 68
 69        pc = Pinecone()
 70        idx = pc.Index("index-name")
 71
 72        # A Vector object
 73        idx.upsert(
 74            namespace = 'my-namespace',
 75            vectors = [
 76                Vector(id='id1', values=[0.1, 0.2, 0.3, 0.4], metadata={'metadata_key': 'metadata_value'}),
 77            ]
 78        )
 79
 80        # A vector tuple
 81        idx.upsert(
 82            namespace = 'my-namespace',
 83            vectors = [
 84                ('id1', [0.1, 0.2, 0.3, 0.4]),
 85            ]
 86        )
 87
 88        # A vector tuple with metadata
 89        idx.upsert(
 90            namespace = 'my-namespace',
 91            vectors = [
 92                ('id1', [0.1, 0.2, 0.3, 0.4], {'metadata_key': 'metadata_value'}),
 93            ]
 94        )
 95
 96        # A vector dictionary
 97        idx.upsert(
 98            namespace = 'my-namespace',
 99            vectors = [
100                {"id": 1, "values": [0.1, 0.2, 0.3, 0.4], "metadata": {"metadata_key": "metadata_value"}},
101            ]
102        ```
103
104        ## Upserting sparse vectors
105
106        ```python
107        from pinecone import Pinecone, Vector, SparseValues
108
109        pc = Pinecone()
110        idx = pc.Index("index-name")
111
112        # A Vector object
113        idx.upsert(
114            namespace = 'my-namespace',
115            vectors = [
116                Vector(id='id1', sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4])),
117            ]
118        )
119
120        # A dictionary
121        idx.upsert(
122            namespace = 'my-namespace',
123            vectors = [
124                {"id": 1, "sparse_values": {"indices": [1, 2], "values": [0.2, 0.4]}},
125            ]
126        )
127        ```
128
129        ## Batch upsert
130
131        If you have a large number of vectors, you can upsert them in batches.
132
133        ```python
134        from pinecone import Pinecone, Vector
135
136        pc = Pinecone()
137        idx = pc.Index("index-name")
138
139        idx.upsert(
140            namespace = 'my-namespace',
141            vectors = [
142                {'id': 'id1', 'values': [0.1, 0.2, 0.3, 0.4]},
143                {'id': 'id2', 'values': [0.2, 0.3, 0.4, 0.5]},
144                {'id': 'id3', 'values': [0.3, 0.4, 0.5, 0.6]},
145                {'id': 'id4', 'values': [0.4, 0.5, 0.6, 0.7]},
146                {'id': 'id5', 'values': [0.5, 0.6, 0.7, 0.8]},
147                # More vectors here
148            ],
149            batch_size = 50
150        )
151        ```
152
153        ## Visual progress bar with tqdm
154
155        To see a progress bar when upserting in batches, you will need to separately install the `tqdm` package.
156        If `tqdm` is present, the client will detect and use it to display progress when `show_progress=True`.
157        """
158        pass
159
160    @abstractmethod
161    def upsert_from_dataframe(
162        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
163    ):
164        """Upserts a dataframe into the index.
165
166        Args:
167            df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
168            namespace: The namespace to upsert into.
169            batch_size: The number of rows to upsert in a single batch.
170            show_progress: Whether to show a progress bar.
171        """
172        pass
173
174    @abstractmethod
175    def upsert_records(self, namespace: str, records: List[Dict]):
176        """
177        :param namespace: The namespace of the index to upsert records to.
178        :type namespace: str, required
179        :param records: The records to upsert into the index.
180        :type records: List[Dict], required
181
182        Upsert records to a namespace. A record is a dictionary that contains eitiher an `id` or `_id`
183        field along with other fields that will be stored as metadata. The `id` or `_id` field is used
184        as the unique identifier for the record. At least one field in the record should correspond to
185        a field mapping in the index's embed configuration.
186
187        When records are upserted, Pinecone converts mapped fields into embeddings and upserts them into
188        the specified namespacce of the index.
189
190        ```python
191        from pinecone import (
192            Pinecone,
193            CloudProvider,
194            AwsRegion,
195            EmbedModel
196            IndexEmbed
197        )
198
199        pc = Pinecone(api_key="<<PINECONE_API_KEY>>")
200
201        # Create an index for your embedding model
202        index_model = pc.create_index_for_model(
203            name="my-model-index",
204            cloud=CloudProvider.AWS,
205            region=AwsRegion.US_WEST_2,
206            embed=IndexEmbed(
207                model=EmbedModel.Multilingual_E5_Large,
208                field_map={"text": "my_text_field"}
209            )
210        )
211
212        # Instantiate the index client
213        idx = pc.Index(host=index_model.host)
214
215        # upsert records
216        idx.upsert_records(
217            namespace="my-namespace",
218            records=[
219                {
220                    "_id": "test1",
221                    "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
222                },
223                {
224                    "_id": "test2",
225                    "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
226                },
227                {
228                    "_id": "test3",
229                    "my_text_field": "Many people enjoy eating apples as a healthy snack.",
230                },
231                {
232                    "_id": "test4",
233                    "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
234                },
235                {
236                    "_id": "test5",
237                    "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
238                },
239                {
240                    "_id": "test6",
241                    "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
242                },
243            ],
244        )
245
246        from pinecone import SearchQuery, SearchRerank, RerankModel
247
248        # search for similar records
249        response = idx.search_records(
250            namespace="my-namespace",
251            query=SearchQuery(
252                inputs={
253                    "text": "Apple corporation",
254                },
255                top_k=3,
256            ),
257            rerank=SearchRerank(
258                model=RerankModel.Bge_Reranker_V2_M3,
259                rank_fields=["my_text_field"],
260                top_n=3,
261            ),
262        )
263        ```
264        """
265        pass
266
267    @abstractmethod
268    def search(
269        self,
270        namespace: str,
271        query: Union[SearchQueryTypedDict, SearchQuery],
272        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
273        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
274    ) -> SearchRecordsResponse:
275        """
276        :param namespace: The namespace in the index to search.
277        :type namespace: str, required
278        :param query: The SearchQuery to use for the search.
279        :type query: Union[Dict, SearchQuery], required
280        :param rerank: The SearchRerank to use with the search request.
281        :type rerank: Union[Dict, SearchRerank], optional
282        :return: The records that match the search.
283
284        Search for records.
285
286        This operation converts a query to a vector embedding and then searches a namespace. You
287        can optionally provide a reranking operation as part of the search.
288
289        ```python
290        from pinecone import (
291            Pinecone,
292            CloudProvider,
293            AwsRegion,
294            EmbedModel
295            IndexEmbed
296        )
297
298        pc = Pinecone(api_key="<<PINECONE_API_KEY>>")
299
300        # Create an index for your embedding model
301        index_model = pc.create_index_for_model(
302            name="my-model-index",
303            cloud=CloudProvider.AWS,
304            region=AwsRegion.US_WEST_2,
305            embed=IndexEmbed(
306                model=EmbedModel.Multilingual_E5_Large,
307                field_map={"text": "my_text_field"}
308            )
309        )
310
311        # Instantiate the index client
312        idx = pc.Index(host=index_model.host)
313
314        # upsert records
315        idx.upsert_records(
316            namespace="my-namespace",
317            records=[
318                {
319                    "_id": "test1",
320                    "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
321                },
322                {
323                    "_id": "test2",
324                    "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
325                },
326                {
327                    "_id": "test3",
328                    "my_text_field": "Many people enjoy eating apples as a healthy snack.",
329                },
330                {
331                    "_id": "test4",
332                    "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
333                },
334                {
335                    "_id": "test5",
336                    "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
337                },
338                {
339                    "_id": "test6",
340                    "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
341                },
342            ],
343        )
344
345        from pinecone import SearchQuery, SearchRerank, RerankModel
346
347        # search for similar records
348        response = idx.search_records(
349            namespace="my-namespace",
350            query=SearchQuery(
351                inputs={
352                    "text": "Apple corporation",
353                },
354                top_k=3,
355            ),
356            rerank=SearchRerank(
357                model=RerankModel.Bge_Reranker_V2_M3,
358                rank_fields=["my_text_field"],
359                top_n=3,
360            ),
361        )
362        ```
363        """
364        pass
365
366    @abstractmethod
367    def search_records(
368        self,
369        namespace: str,
370        query: Union[SearchQueryTypedDict, SearchQuery],
371        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
372        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
373    ) -> SearchRecordsResponse:
374        """Alias of the search() method."""
375        pass
376
377    @abstractmethod
378    def delete(
379        self,
380        ids: Optional[List[str]] = None,
381        delete_all: Optional[bool] = None,
382        namespace: Optional[str] = None,
383        filter: Optional[FilterTypedDict] = None,
384        **kwargs,
385    ) -> Dict[str, Any]:
386        """
387        Args:
388            ids (List[str]): Vector ids to delete [optional]
389            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional]
390                                Default is False.
391            namespace (str): The namespace to delete vectors from [optional]
392                            If not specified, the default namespace is used.
393            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
394                    If specified, the metadata filter here will be used to select the vectors to delete.
395                    This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True.
396                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
397
398
399        The Delete operation deletes vectors from the index, from a single namespace.
400
401        No error is raised if the vector id does not exist.
402
403        Note: For any delete call, if namespace is not specified, the default namespace `""` is used.
404        Since the delete operation does not error when ids are not present, this means you may not receive
405        an error if you delete from the wrong namespace.
406
407        Delete can occur in the following mutual exclusive ways:
408        1. Delete by ids from a single namespace
409        2. Delete all vectors from a single namespace by setting delete_all to True
410        3. Delete all vectors from a single namespace by specifying a metadata filter
411            (note that for this option delete all must be set to False)
412
413        API reference: https://docs.pinecone.io/reference/delete_post
414
415        Examples:
416            >>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
417            >>> index.delete(delete_all=True, namespace='my_namespace')
418            >>> index.delete(filter={'key': 'value'}, namespace='my_namespace')
419
420
421          Returns: An empty dictionary if the delete operation was successful.
422        """
423        pass
424
425    @abstractmethod
426    def fetch(self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> FetchResponse:
427        """
428        The fetch operation looks up and returns vectors, by ID, from a single namespace.
429        The returned vectors include the vector data and/or metadata.
430
431        API reference: https://docs.pinecone.io/reference/fetch
432
433        Examples:
434            >>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
435            >>> index.fetch(ids=['id1', 'id2'])
436
437        Args:
438            ids (List[str]): The vector IDs to fetch.
439            namespace (str): The namespace to fetch vectors from.
440                             If not specified, the default namespace is used. [optional]
441
442        Returns: FetchResponse object which contains the list of Vector objects, and namespace name.
443        """
444        pass
445
446    @abstractmethod
447    def query(
448        self,
449        *args,
450        top_k: int,
451        vector: Optional[List[float]] = None,
452        id: Optional[str] = None,
453        namespace: Optional[str] = None,
454        filter: Optional[FilterTypedDict] = None,
455        include_values: Optional[bool] = None,
456        include_metadata: Optional[bool] = None,
457        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
458        **kwargs,
459    ) -> Union[QueryResponse, ApplyResult]:
460        """
461        The Query operation searches a namespace, using a query vector.
462        It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
463
464        API reference: https://docs.pinecone.io/reference/query
465
466        Examples:
467            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
468            >>> index.query(id='id1', top_k=10, namespace='my_namespace')
469            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
470            >>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
471            >>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
472            >>>             top_k=10, namespace='my_namespace')
473            >>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
474            >>>             top_k=10, namespace='my_namespace')
475
476        Args:
477            vector (List[float]): The query vector. This should be the same length as the dimension of the index
478                                  being queried. Each `query()` request can contain only one of the parameters
479                                  `id` or `vector`.. [optional]
480            id (str): The unique ID of the vector to be used as a query vector.
481                      Each `query()` request can contain only one of the parameters
482                      `vector` or  `id`. [optional]
483            top_k (int): The number of results to return for each query. Must be an integer greater than 1.
484            namespace (str): The namespace to query vectors from.
485                             If not specified, the default namespace is used. [optional]
486            filter (Dict[str, Union[str, float, int, bool, List, dict]):
487                    The filter to apply. You can use vector metadata to limit your search.
488                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
489            include_values (bool): Indicates whether vector values are included in the response.
490                                   If omitted the server will use the default value of False [optional]
491            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.
492                                     If omitted the server will use the default value of False  [optional]
493            sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector.
494                            Expected to be either a SparseValues object or a dict of the form:
495                             {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
496
497        Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects,
498                 and namespace name.
499        """
500        pass
501
502    @abstractmethod
503    def query_namespaces(
504        self,
505        vector: List[float],
506        namespaces: List[str],
507        top_k: Optional[int] = None,
508        filter: Optional[FilterTypedDict] = None,
509        include_values: Optional[bool] = None,
510        include_metadata: Optional[bool] = None,
511        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
512        **kwargs,
513    ) -> QueryNamespacesResults:
514        """The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.
515
516        Since several asynchronous calls are made on your behalf when calling this method, you will need to tune the pool_threads and connection_pool_maxsize parameter of the Index constructor to suite your workload.
517
518        Examples:
519
520        ```python
521        from pinecone import Pinecone
522
523        pc = Pinecone(api_key="your-api-key")
524        index = pc.Index(
525            host="index-name",
526            pool_threads=32,
527            connection_pool_maxsize=32
528        )
529
530        query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
531        combined_results = index.query_namespaces(
532            vector=query_vec,
533            namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
534            metric="cosine",
535            top_k=10,
536            filter={'genre': {"$eq": "drama"}},
537            include_values=True,
538            include_metadata=True
539        )
540        for vec in combined_results.matches:
541            print(vec.id, vec.score)
542        print(combined_results.usage)
543        ```
544
545        Args:
546            vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
547            namespaces (List[str]): The list of namespaces to query.
548            top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
549            metric (str): Must be one of 'cosine', 'euclidean', 'dotproduct'. This is needed in order to merge results across namespaces, since the interpretation of score depends on the index metric type.
550            filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
551            include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
552            include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
553            sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
554
555        Returns:
556            QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.
557        """
558        pass
559
560    @abstractmethod
561    def update(
562        self,
563        id: str,
564        values: Optional[List[float]] = None,
565        set_metadata: Optional[VectorMetadataTypedDict] = None,
566        namespace: Optional[str] = None,
567        sparse_values: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
568        **kwargs,
569    ) -> Dict[str, Any]:
570        """
571        The Update operation updates vector in a namespace.
572        If a value is included, it will overwrite the previous value.
573        If a set_metadata is included,
574        the values of the fields specified in it will be added or overwrite the previous value.
575
576        API reference: https://docs.pinecone.io/reference/update
577
578        Examples:
579            >>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
580            >>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace')
581            >>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
582            >>>              namespace='my_namespace')
583            >>> index.update(id='id1', values=[1, 2, 3], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]),
584            >>>              namespace='my_namespace')
585
586        Args:
587            id (str): Vector's unique id.
588            values (List[float]): vector values to set. [optional]
589            set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]):
590                metadata to set for vector. [optional]
591            namespace (str): Namespace name where to update the vector.. [optional]
592            sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector.
593                           Expected to be either a SparseValues object or a dict of the form:
594                           {'indices': List[int], 'values': List[float]} where the lists each have the same length.
595
596
597        Returns: An empty dictionary if the update was successful.
598        """
599        pass
600
601    @abstractmethod
602    def describe_index_stats(
603        self, filter: Optional[FilterTypedDict] = None, **kwargs
604    ) -> DescribeIndexStatsResponse:
605        """
606        The DescribeIndexStats operation returns statistics about the index's contents.
607        For example: The vector count per namespace and the number of dimensions.
608
609        API reference: https://docs.pinecone.io/reference/describe_index_stats_post
610
611        Examples:
612            >>> index.describe_index_stats()
613            >>> index.describe_index_stats(filter={'key': 'value'})
614
615        Args:
616            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
617            If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
618            See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
619
620        Returns: DescribeIndexStatsResponse object which contains stats about the index.
621        """
622        pass
623
624    @abstractmethod
625    def list_paginated(
626        self,
627        prefix: Optional[str] = None,
628        limit: Optional[int] = None,
629        pagination_token: Optional[str] = None,
630        namespace: Optional[str] = None,
631        **kwargs,
632    ) -> ListResponse:
633        """
634        The list_paginated operation finds vectors based on an id prefix within a single namespace.
635        It returns matching ids in a paginated form, with a pagination token to fetch the next page of results.
636        This id list can then be passed to fetch or delete operations, depending on your use case.
637
638        Consider using the `list` method to avoid having to handle pagination tokens manually.
639
640        Examples:
641            >>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
642            >>> [v.id for v in results.vectors]
643            ['99', '990', '991', '992', '993']
644            >>> results.pagination.next
645            eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
646            >>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
647
648        Args:
649            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
650                                    be used with the effect of listing all ids in a namespace [optional]
651            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
652            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
653                in the response if additional results are available. [optional]
654            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
655
656        Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.
657        """
658        pass
659
660    @abstractmethod
661    def list(self, **kwargs):
662        """
663        The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields
664        a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your
665        behalf.
666
667        Examples:
668            >>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
669            >>>     print(ids)
670            ['99', '990', '991', '992', '993']
671            ['994', '995', '996', '997', '998']
672            ['999']
673
674        Args:
675            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
676                                    be used with the effect of listing all ids in a namespace [optional]
677            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
678            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
679                in the response if additional results are available. [optional]
680            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
681        """
682        pass

Helper class that provides a standard way to create an ABC using inheritance.

@abstractmethod
def upsert( self, vectors: Union[List[pinecone.core.openapi.db_data.model.vector.Vector], List[Tuple[str, List[float]]], List[Tuple[str, List[float], Dict[str, Union[str, int, float, List[str], List[int], List[float]]]]], List[pinecone.data.types.vector_typed_dict.VectorTypedDict]], namespace: Optional[str] = None, batch_size: Optional[int] = None, show_progress: bool = True, **kwargs) -> pinecone.core.openapi.db_data.model.upsert_response.UpsertResponse:
 31    @abstractmethod
 32    def upsert(
 33        self,
 34        vectors: Union[
 35            List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]
 36        ],
 37        namespace: Optional[str] = None,
 38        batch_size: Optional[int] = None,
 39        show_progress: bool = True,
 40        **kwargs,
 41    ) -> UpsertResponse:
 42        """
 43        Args:
 44            vectors (Union[List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]]): A list of vectors to upsert.
 45            namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
 46            batch_size (int): The number of vectors to upsert in each batch.
 47                               If not specified, all vectors will be upserted in a single batch. [optional]
 48            show_progress (bool): Whether to show a progress bar using tqdm.
 49                                  Applied only if batch_size is provided. Default is True.
 50
 51        Returns:
 52            `UpsertResponse`, includes the number of vectors upserted.
 53
 54
 55        The upsert operation writes vectors into a namespace.
 56        If a new value is upserted for an existing vector id, it will overwrite the previous value.
 57
 58        To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel
 59
 60        ## Upserting dense vectors
 61
 62        **Note:** the dimension of each dense vector must match the dimension of the index.
 63
 64        A vector can be represented in a variety of ways.
 65
 66        ```python
 67        from pinecone import Pinecone, Vector
 68
 69        pc = Pinecone()
 70        idx = pc.Index("index-name")
 71
 72        # A Vector object
 73        idx.upsert(
 74            namespace = 'my-namespace',
 75            vectors = [
 76                Vector(id='id1', values=[0.1, 0.2, 0.3, 0.4], metadata={'metadata_key': 'metadata_value'}),
 77            ]
 78        )
 79
 80        # A vector tuple
 81        idx.upsert(
 82            namespace = 'my-namespace',
 83            vectors = [
 84                ('id1', [0.1, 0.2, 0.3, 0.4]),
 85            ]
 86        )
 87
 88        # A vector tuple with metadata
 89        idx.upsert(
 90            namespace = 'my-namespace',
 91            vectors = [
 92                ('id1', [0.1, 0.2, 0.3, 0.4], {'metadata_key': 'metadata_value'}),
 93            ]
 94        )
 95
 96        # A vector dictionary
 97        idx.upsert(
 98            namespace = 'my-namespace',
 99            vectors = [
100                {"id": 1, "values": [0.1, 0.2, 0.3, 0.4], "metadata": {"metadata_key": "metadata_value"}},
101            ]
102        ```
103
104        ## Upserting sparse vectors
105
106        ```python
107        from pinecone import Pinecone, Vector, SparseValues
108
109        pc = Pinecone()
110        idx = pc.Index("index-name")
111
112        # A Vector object
113        idx.upsert(
114            namespace = 'my-namespace',
115            vectors = [
116                Vector(id='id1', sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4])),
117            ]
118        )
119
120        # A dictionary
121        idx.upsert(
122            namespace = 'my-namespace',
123            vectors = [
124                {"id": 1, "sparse_values": {"indices": [1, 2], "values": [0.2, 0.4]}},
125            ]
126        )
127        ```
128
129        ## Batch upsert
130
131        If you have a large number of vectors, you can upsert them in batches.
132
133        ```python
134        from pinecone import Pinecone, Vector
135
136        pc = Pinecone()
137        idx = pc.Index("index-name")
138
139        idx.upsert(
140            namespace = 'my-namespace',
141            vectors = [
142                {'id': 'id1', 'values': [0.1, 0.2, 0.3, 0.4]},
143                {'id': 'id2', 'values': [0.2, 0.3, 0.4, 0.5]},
144                {'id': 'id3', 'values': [0.3, 0.4, 0.5, 0.6]},
145                {'id': 'id4', 'values': [0.4, 0.5, 0.6, 0.7]},
146                {'id': 'id5', 'values': [0.5, 0.6, 0.7, 0.8]},
147                # More vectors here
148            ],
149            batch_size = 50
150        )
151        ```
152
153        ## Visual progress bar with tqdm
154
155        To see a progress bar when upserting in batches, you will need to separately install the `tqdm` package.
156        If `tqdm` is present, the client will detect and use it to display progress when `show_progress=True`.
157        """
158        pass
Arguments:
  • vectors (Union[List[Vector], List[VectorTuple], List[VectorTupleWithMetadata], List[VectorTypedDict]]): A list of vectors to upsert.
  • namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
  • batch_size (int): The number of vectors to upsert in each batch. If not specified, all vectors will be upserted in a single batch. [optional]
  • show_progress (bool): Whether to show a progress bar using tqdm. Applied only if batch_size is provided. Default is True.
Returns:

UpsertResponse, includes the number of vectors upserted.

The upsert operation writes vectors into a namespace. If a new value is upserted for an existing vector id, it will overwrite the previous value.

To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel

Upserting dense vectors

Note: the dimension of each dense vector must match the dimension of the index.

A vector can be represented in a variety of ways.

from pinecone import Pinecone, Vector

pc = Pinecone()
idx = pc.Index("index-name")

# A Vector object
idx.upsert(
    namespace = 'my-namespace',
    vectors = [
        Vector(id='id1', values=[0.1, 0.2, 0.3, 0.4], metadata={'metadata_key': 'metadata_value'}),
    ]
)

# A vector tuple
idx.upsert(
    namespace = 'my-namespace',
    vectors = [
        ('id1', [0.1, 0.2, 0.3, 0.4]),
    ]
)

# A vector tuple with metadata
idx.upsert(
    namespace = 'my-namespace',
    vectors = [
        ('id1', [0.1, 0.2, 0.3, 0.4], {'metadata_key': 'metadata_value'}),
    ]
)

# A vector dictionary
idx.upsert(
    namespace = 'my-namespace',
    vectors = [
        {"id": 1, "values": [0.1, 0.2, 0.3, 0.4], "metadata": {"metadata_key": "metadata_value"}},
    ]

Upserting sparse vectors

from pinecone import Pinecone, Vector, SparseValues

pc = Pinecone()
idx = pc.Index("index-name")

# A Vector object
idx.upsert(
    namespace = 'my-namespace',
    vectors = [
        Vector(id='id1', sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4])),
    ]
)

# A dictionary
idx.upsert(
    namespace = 'my-namespace',
    vectors = [
        {"id": 1, "sparse_values": {"indices": [1, 2], "values": [0.2, 0.4]}},
    ]
)

Batch upsert

If you have a large number of vectors, you can upsert them in batches.

from pinecone import Pinecone, Vector

pc = Pinecone()
idx = pc.Index("index-name")

idx.upsert(
    namespace = 'my-namespace',
    vectors = [
        {'id': 'id1', 'values': [0.1, 0.2, 0.3, 0.4]},
        {'id': 'id2', 'values': [0.2, 0.3, 0.4, 0.5]},
        {'id': 'id3', 'values': [0.3, 0.4, 0.5, 0.6]},
        {'id': 'id4', 'values': [0.4, 0.5, 0.6, 0.7]},
        {'id': 'id5', 'values': [0.5, 0.6, 0.7, 0.8]},
        # More vectors here
    ],
    batch_size = 50
)

Visual progress bar with tqdm

To see a progress bar when upserting in batches, you will need to separately install the tqdm package. If tqdm is present, the client will detect and use it to display progress when show_progress=True.

@abstractmethod
def upsert_from_dataframe( self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True):
160    @abstractmethod
161    def upsert_from_dataframe(
162        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
163    ):
164        """Upserts a dataframe into the index.
165
166        Args:
167            df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
168            namespace: The namespace to upsert into.
169            batch_size: The number of rows to upsert in a single batch.
170            show_progress: Whether to show a progress bar.
171        """
172        pass

Upserts a dataframe into the index.

Arguments:
  • df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
  • namespace: The namespace to upsert into.
  • batch_size: The number of rows to upsert in a single batch.
  • show_progress: Whether to show a progress bar.
@abstractmethod
def upsert_records(self, namespace: str, records: List[Dict]):
174    @abstractmethod
175    def upsert_records(self, namespace: str, records: List[Dict]):
176        """
177        :param namespace: The namespace of the index to upsert records to.
178        :type namespace: str, required
179        :param records: The records to upsert into the index.
180        :type records: List[Dict], required
181
182        Upsert records to a namespace. A record is a dictionary that contains eitiher an `id` or `_id`
183        field along with other fields that will be stored as metadata. The `id` or `_id` field is used
184        as the unique identifier for the record. At least one field in the record should correspond to
185        a field mapping in the index's embed configuration.
186
187        When records are upserted, Pinecone converts mapped fields into embeddings and upserts them into
188        the specified namespacce of the index.
189
190        ```python
191        from pinecone import (
192            Pinecone,
193            CloudProvider,
194            AwsRegion,
195            EmbedModel
196            IndexEmbed
197        )
198
199        pc = Pinecone(api_key="<<PINECONE_API_KEY>>")
200
201        # Create an index for your embedding model
202        index_model = pc.create_index_for_model(
203            name="my-model-index",
204            cloud=CloudProvider.AWS,
205            region=AwsRegion.US_WEST_2,
206            embed=IndexEmbed(
207                model=EmbedModel.Multilingual_E5_Large,
208                field_map={"text": "my_text_field"}
209            )
210        )
211
212        # Instantiate the index client
213        idx = pc.Index(host=index_model.host)
214
215        # upsert records
216        idx.upsert_records(
217            namespace="my-namespace",
218            records=[
219                {
220                    "_id": "test1",
221                    "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
222                },
223                {
224                    "_id": "test2",
225                    "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
226                },
227                {
228                    "_id": "test3",
229                    "my_text_field": "Many people enjoy eating apples as a healthy snack.",
230                },
231                {
232                    "_id": "test4",
233                    "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
234                },
235                {
236                    "_id": "test5",
237                    "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
238                },
239                {
240                    "_id": "test6",
241                    "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
242                },
243            ],
244        )
245
246        from pinecone import SearchQuery, SearchRerank, RerankModel
247
248        # search for similar records
249        response = idx.search_records(
250            namespace="my-namespace",
251            query=SearchQuery(
252                inputs={
253                    "text": "Apple corporation",
254                },
255                top_k=3,
256            ),
257            rerank=SearchRerank(
258                model=RerankModel.Bge_Reranker_V2_M3,
259                rank_fields=["my_text_field"],
260                top_n=3,
261            ),
262        )
263        ```
264        """
265        pass
Parameters
  • namespace: The namespace of the index to upsert records to.
  • records: The records to upsert into the index.

Upsert records to a namespace. A record is a dictionary that contains eitiher an id or _id field along with other fields that will be stored as metadata. The id or _id field is used as the unique identifier for the record. At least one field in the record should correspond to a field mapping in the index's embed configuration.

When records are upserted, Pinecone converts mapped fields into embeddings and upserts them into the specified namespacce of the index.

from pinecone import (
    Pinecone,
    CloudProvider,
    AwsRegion,
    EmbedModel
    IndexEmbed
)

pc = Pinecone(api_key="<<PINECONE_API_KEY>>")

# Create an index for your embedding model
index_model = pc.create_index_for_model(
    name="my-model-index",
    cloud=CloudProvider.AWS,
    region=AwsRegion.US_WEST_2,
    embed=IndexEmbed(
        model=EmbedModel.Multilingual_E5_Large,
        field_map={"text": "my_text_field"}
    )
)

# Instantiate the index client
idx = pc.Index(host=index_model.host)

# upsert records
idx.upsert_records(
    namespace="my-namespace",
    records=[
        {
            "_id": "test1",
            "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
        },
        {
            "_id": "test2",
            "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
        },
        {
            "_id": "test3",
            "my_text_field": "Many people enjoy eating apples as a healthy snack.",
        },
        {
            "_id": "test4",
            "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
        },
        {
            "_id": "test5",
            "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
        },
        {
            "_id": "test6",
            "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
        },
    ],
)

from pinecone import SearchQuery, SearchRerank, RerankModel

# search for similar records
response = idx.search_records(
    namespace="my-namespace",
    query=SearchQuery(
        inputs={
            "text": "Apple corporation",
        },
        top_k=3,
    ),
    rerank=SearchRerank(
        model=RerankModel.Bge_Reranker_V2_M3,
        rank_fields=["my_text_field"],
        top_n=3,
    ),
)
@abstractmethod
def search( self, namespace: str, query: Union[pinecone.data.types.search_query_typed_dict.SearchQueryTypedDict, pinecone.data.dataclasses.search_query.SearchQuery], rerank: Union[pinecone.data.types.search_rerank_typed_dict.SearchRerankTypedDict, pinecone.data.dataclasses.search_rerank.SearchRerank, NoneType] = None, fields: Optional[List[str]] = ['*']) -> pinecone.core.openapi.db_data.model.search_records_response.SearchRecordsResponse:
267    @abstractmethod
268    def search(
269        self,
270        namespace: str,
271        query: Union[SearchQueryTypedDict, SearchQuery],
272        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
273        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
274    ) -> SearchRecordsResponse:
275        """
276        :param namespace: The namespace in the index to search.
277        :type namespace: str, required
278        :param query: The SearchQuery to use for the search.
279        :type query: Union[Dict, SearchQuery], required
280        :param rerank: The SearchRerank to use with the search request.
281        :type rerank: Union[Dict, SearchRerank], optional
282        :return: The records that match the search.
283
284        Search for records.
285
286        This operation converts a query to a vector embedding and then searches a namespace. You
287        can optionally provide a reranking operation as part of the search.
288
289        ```python
290        from pinecone import (
291            Pinecone,
292            CloudProvider,
293            AwsRegion,
294            EmbedModel
295            IndexEmbed
296        )
297
298        pc = Pinecone(api_key="<<PINECONE_API_KEY>>")
299
300        # Create an index for your embedding model
301        index_model = pc.create_index_for_model(
302            name="my-model-index",
303            cloud=CloudProvider.AWS,
304            region=AwsRegion.US_WEST_2,
305            embed=IndexEmbed(
306                model=EmbedModel.Multilingual_E5_Large,
307                field_map={"text": "my_text_field"}
308            )
309        )
310
311        # Instantiate the index client
312        idx = pc.Index(host=index_model.host)
313
314        # upsert records
315        idx.upsert_records(
316            namespace="my-namespace",
317            records=[
318                {
319                    "_id": "test1",
320                    "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
321                },
322                {
323                    "_id": "test2",
324                    "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
325                },
326                {
327                    "_id": "test3",
328                    "my_text_field": "Many people enjoy eating apples as a healthy snack.",
329                },
330                {
331                    "_id": "test4",
332                    "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
333                },
334                {
335                    "_id": "test5",
336                    "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
337                },
338                {
339                    "_id": "test6",
340                    "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
341                },
342            ],
343        )
344
345        from pinecone import SearchQuery, SearchRerank, RerankModel
346
347        # search for similar records
348        response = idx.search_records(
349            namespace="my-namespace",
350            query=SearchQuery(
351                inputs={
352                    "text": "Apple corporation",
353                },
354                top_k=3,
355            ),
356            rerank=SearchRerank(
357                model=RerankModel.Bge_Reranker_V2_M3,
358                rank_fields=["my_text_field"],
359                top_n=3,
360            ),
361        )
362        ```
363        """
364        pass
Parameters
  • namespace: The namespace in the index to search.
  • query: The SearchQuery to use for the search.
  • rerank: The SearchRerank to use with the search request.
Returns

The records that match the search.

Search for records.

This operation converts a query to a vector embedding and then searches a namespace. You can optionally provide a reranking operation as part of the search.

from pinecone import (
    Pinecone,
    CloudProvider,
    AwsRegion,
    EmbedModel
    IndexEmbed
)

pc = Pinecone(api_key="<<PINECONE_API_KEY>>")

# Create an index for your embedding model
index_model = pc.create_index_for_model(
    name="my-model-index",
    cloud=CloudProvider.AWS,
    region=AwsRegion.US_WEST_2,
    embed=IndexEmbed(
        model=EmbedModel.Multilingual_E5_Large,
        field_map={"text": "my_text_field"}
    )
)

# Instantiate the index client
idx = pc.Index(host=index_model.host)

# upsert records
idx.upsert_records(
    namespace="my-namespace",
    records=[
        {
            "_id": "test1",
            "my_text_field": "Apple is a popular fruit known for its sweetness and crisp texture.",
        },
        {
            "_id": "test2",
            "my_text_field": "The tech company Apple is known for its innovative products like the iPhone.",
        },
        {
            "_id": "test3",
            "my_text_field": "Many people enjoy eating apples as a healthy snack.",
        },
        {
            "_id": "test4",
            "my_text_field": "Apple Inc. has revolutionized the tech industry with its sleek designs and user-friendly interfaces.",
        },
        {
            "_id": "test5",
            "my_text_field": "An apple a day keeps the doctor away, as the saying goes.",
        },
        {
            "_id": "test6",
            "my_text_field": "Apple Computer Company was founded on April 1, 1976, by Steve Jobs, Steve Wozniak, and Ronald Wayne as a partnership.",
        },
    ],
)

from pinecone import SearchQuery, SearchRerank, RerankModel

# search for similar records
response = idx.search_records(
    namespace="my-namespace",
    query=SearchQuery(
        inputs={
            "text": "Apple corporation",
        },
        top_k=3,
    ),
    rerank=SearchRerank(
        model=RerankModel.Bge_Reranker_V2_M3,
        rank_fields=["my_text_field"],
        top_n=3,
    ),
)
@abstractmethod
def search_records( self, namespace: str, query: Union[pinecone.data.types.search_query_typed_dict.SearchQueryTypedDict, pinecone.data.dataclasses.search_query.SearchQuery], rerank: Union[pinecone.data.types.search_rerank_typed_dict.SearchRerankTypedDict, pinecone.data.dataclasses.search_rerank.SearchRerank, NoneType] = None, fields: Optional[List[str]] = ['*']) -> pinecone.core.openapi.db_data.model.search_records_response.SearchRecordsResponse:
366    @abstractmethod
367    def search_records(
368        self,
369        namespace: str,
370        query: Union[SearchQueryTypedDict, SearchQuery],
371        rerank: Optional[Union[SearchRerankTypedDict, SearchRerank]] = None,
372        fields: Optional[List[str]] = ["*"],  # Default to returning all fields
373    ) -> SearchRecordsResponse:
374        """Alias of the search() method."""
375        pass

Alias of the search() method.

@abstractmethod
def delete( self, ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, namespace: Optional[str] = None, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, **kwargs) -> Dict[str, Any]:
377    @abstractmethod
378    def delete(
379        self,
380        ids: Optional[List[str]] = None,
381        delete_all: Optional[bool] = None,
382        namespace: Optional[str] = None,
383        filter: Optional[FilterTypedDict] = None,
384        **kwargs,
385    ) -> Dict[str, Any]:
386        """
387        Args:
388            ids (List[str]): Vector ids to delete [optional]
389            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional]
390                                Default is False.
391            namespace (str): The namespace to delete vectors from [optional]
392                            If not specified, the default namespace is used.
393            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
394                    If specified, the metadata filter here will be used to select the vectors to delete.
395                    This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True.
396                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
397
398
399        The Delete operation deletes vectors from the index, from a single namespace.
400
401        No error is raised if the vector id does not exist.
402
403        Note: For any delete call, if namespace is not specified, the default namespace `""` is used.
404        Since the delete operation does not error when ids are not present, this means you may not receive
405        an error if you delete from the wrong namespace.
406
407        Delete can occur in the following mutual exclusive ways:
408        1. Delete by ids from a single namespace
409        2. Delete all vectors from a single namespace by setting delete_all to True
410        3. Delete all vectors from a single namespace by specifying a metadata filter
411            (note that for this option delete all must be set to False)
412
413        API reference: https://docs.pinecone.io/reference/delete_post
414
415        Examples:
416            >>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
417            >>> index.delete(delete_all=True, namespace='my_namespace')
418            >>> index.delete(filter={'key': 'value'}, namespace='my_namespace')
419
420
421          Returns: An empty dictionary if the delete operation was successful.
422        """
423        pass
Arguments:
  • ids (List[str]): Vector ids to delete [optional]
  • delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional] Default is False.
  • namespace (str): The namespace to delete vectors from [optional] If not specified, the default namespace is used.
  • filter (Dict[str, Union[str, float, int, bool, List, dict]]): If specified, the metadata filter here will be used to select the vectors to delete. This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True. See https://www.pinecone.io/docs/metadata-filtering/.. [optional]

The Delete operation deletes vectors from the index, from a single namespace.

No error is raised if the vector id does not exist.

Note: For any delete call, if namespace is not specified, the default namespace "" is used. Since the delete operation does not error when ids are not present, this means you may not receive an error if you delete from the wrong namespace.

Delete can occur in the following mutual exclusive ways:

  1. Delete by ids from a single namespace
  2. Delete all vectors from a single namespace by setting delete_all to True
  3. Delete all vectors from a single namespace by specifying a metadata filter (note that for this option delete all must be set to False)

API reference: https://docs.pinecone.io/reference/delete_post

Examples:
>>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
  >>> index.delete(delete_all=True, namespace='my_namespace')
  >>> index.delete(filter={'key': 'value'}, namespace='my_namespace')

Returns: An empty dictionary if the delete operation was successful.

@abstractmethod
def fetch( self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> pinecone.core.openapi.db_data.model.fetch_response.FetchResponse:
425    @abstractmethod
426    def fetch(self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> FetchResponse:
427        """
428        The fetch operation looks up and returns vectors, by ID, from a single namespace.
429        The returned vectors include the vector data and/or metadata.
430
431        API reference: https://docs.pinecone.io/reference/fetch
432
433        Examples:
434            >>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
435            >>> index.fetch(ids=['id1', 'id2'])
436
437        Args:
438            ids (List[str]): The vector IDs to fetch.
439            namespace (str): The namespace to fetch vectors from.
440                             If not specified, the default namespace is used. [optional]
441
442        Returns: FetchResponse object which contains the list of Vector objects, and namespace name.
443        """
444        pass

The fetch operation looks up and returns vectors, by ID, from a single namespace. The returned vectors include the vector data and/or metadata.

API reference: https://docs.pinecone.io/reference/fetch

Examples:
>>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
>>> index.fetch(ids=['id1', 'id2'])
Arguments:
  • ids (List[str]): The vector IDs to fetch.
  • namespace (str): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]

Returns: FetchResponse object which contains the list of Vector objects, and namespace name.

@abstractmethod
def query( self, *args, top_k: int, vector: Optional[List[float]] = None, id: Optional[str] = None, namespace: Optional[str] = None, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, include_values: Optional[bool] = None, include_metadata: Optional[bool] = None, sparse_vector: Union[pinecone.core.openapi.db_data.model.sparse_values.SparseValues, pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict, NoneType] = None, **kwargs) -> Union[pinecone.core.openapi.db_data.model.query_response.QueryResponse, multiprocessing.pool.ApplyResult]:
446    @abstractmethod
447    def query(
448        self,
449        *args,
450        top_k: int,
451        vector: Optional[List[float]] = None,
452        id: Optional[str] = None,
453        namespace: Optional[str] = None,
454        filter: Optional[FilterTypedDict] = None,
455        include_values: Optional[bool] = None,
456        include_metadata: Optional[bool] = None,
457        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
458        **kwargs,
459    ) -> Union[QueryResponse, ApplyResult]:
460        """
461        The Query operation searches a namespace, using a query vector.
462        It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
463
464        API reference: https://docs.pinecone.io/reference/query
465
466        Examples:
467            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
468            >>> index.query(id='id1', top_k=10, namespace='my_namespace')
469            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
470            >>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
471            >>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
472            >>>             top_k=10, namespace='my_namespace')
473            >>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
474            >>>             top_k=10, namespace='my_namespace')
475
476        Args:
477            vector (List[float]): The query vector. This should be the same length as the dimension of the index
478                                  being queried. Each `query()` request can contain only one of the parameters
479                                  `id` or `vector`.. [optional]
480            id (str): The unique ID of the vector to be used as a query vector.
481                      Each `query()` request can contain only one of the parameters
482                      `vector` or  `id`. [optional]
483            top_k (int): The number of results to return for each query. Must be an integer greater than 1.
484            namespace (str): The namespace to query vectors from.
485                             If not specified, the default namespace is used. [optional]
486            filter (Dict[str, Union[str, float, int, bool, List, dict]):
487                    The filter to apply. You can use vector metadata to limit your search.
488                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
489            include_values (bool): Indicates whether vector values are included in the response.
490                                   If omitted the server will use the default value of False [optional]
491            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.
492                                     If omitted the server will use the default value of False  [optional]
493            sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector.
494                            Expected to be either a SparseValues object or a dict of the form:
495                             {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
496
497        Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects,
498                 and namespace name.
499        """
500        pass

The Query operation searches a namespace, using a query vector. It retrieves the ids of the most similar items in a namespace, along with their similarity scores.

API reference: https://docs.pinecone.io/reference/query

Examples:
>>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
>>> index.query(id='id1', top_k=10, namespace='my_namespace')
>>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
>>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
>>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
>>>             top_k=10, namespace='my_namespace')
>>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
>>>             top_k=10, namespace='my_namespace')
Arguments:
  • vector (List[float]): The query vector. This should be the same length as the dimension of the index being queried. Each query() request can contain only one of the parameters id or vector.. [optional]
  • id (str): The unique ID of the vector to be used as a query vector. Each query() request can contain only one of the parameters vector or id. [optional]
  • top_k (int): The number of results to return for each query. Must be an integer greater than 1.
  • namespace (str): The namespace to query vectors from. If not specified, the default namespace is used. [optional]
  • filter (Dict[str, Union[str, float, int, bool, List, dict]): The filter to apply. You can use vector metadata to limit your search. See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
  • include_values (bool): Indicates whether vector values are included in the response. If omitted the server will use the default value of False [optional]
  • include_metadata (bool): Indicates whether metadata is included in the response as well as the ids. If omitted the server will use the default value of False [optional]
  • sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector. Expected to be either a SparseValues object or a dict of the form: {'indices': List[int], 'values': List[float]}, where the lists each have the same length.

Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects, and namespace name.

@abstractmethod
def query_namespaces( self, vector: List[float], namespaces: List[str], top_k: Optional[int] = None, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, include_values: Optional[bool] = None, include_metadata: Optional[bool] = None, sparse_vector: Union[pinecone.core.openapi.db_data.model.sparse_values.SparseValues, pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict, NoneType] = None, **kwargs) -> pinecone.data.query_results_aggregator.QueryNamespacesResults:
502    @abstractmethod
503    def query_namespaces(
504        self,
505        vector: List[float],
506        namespaces: List[str],
507        top_k: Optional[int] = None,
508        filter: Optional[FilterTypedDict] = None,
509        include_values: Optional[bool] = None,
510        include_metadata: Optional[bool] = None,
511        sparse_vector: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
512        **kwargs,
513    ) -> QueryNamespacesResults:
514        """The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.
515
516        Since several asynchronous calls are made on your behalf when calling this method, you will need to tune the pool_threads and connection_pool_maxsize parameter of the Index constructor to suite your workload.
517
518        Examples:
519
520        ```python
521        from pinecone import Pinecone
522
523        pc = Pinecone(api_key="your-api-key")
524        index = pc.Index(
525            host="index-name",
526            pool_threads=32,
527            connection_pool_maxsize=32
528        )
529
530        query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
531        combined_results = index.query_namespaces(
532            vector=query_vec,
533            namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
534            metric="cosine",
535            top_k=10,
536            filter={'genre': {"$eq": "drama"}},
537            include_values=True,
538            include_metadata=True
539        )
540        for vec in combined_results.matches:
541            print(vec.id, vec.score)
542        print(combined_results.usage)
543        ```
544
545        Args:
546            vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
547            namespaces (List[str]): The list of namespaces to query.
548            top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
549            metric (str): Must be one of 'cosine', 'euclidean', 'dotproduct'. This is needed in order to merge results across namespaces, since the interpretation of score depends on the index metric type.
550            filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
551            include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
552            include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
553            sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
554
555        Returns:
556            QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.
557        """
558        pass

The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.

Since several asynchronous calls are made on your behalf when calling this method, you will need to tune the pool_threads and connection_pool_maxsize parameter of the Index constructor to suite your workload.

Examples:

from pinecone import Pinecone

pc = Pinecone(api_key="your-api-key")
index = pc.Index(
    host="index-name",
    pool_threads=32,
    connection_pool_maxsize=32
)

query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
combined_results = index.query_namespaces(
    vector=query_vec,
    namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
    metric="cosine",
    top_k=10,
    filter={'genre': {"$eq": "drama"}},
    include_values=True,
    include_metadata=True
)
for vec in combined_results.matches:
    print(vec.id, vec.score)
print(combined_results.usage)
Arguments:
  • vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
  • namespaces (List[str]): The list of namespaces to query.
  • top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
  • metric (str): Must be one of 'cosine', 'euclidean', 'dotproduct'. This is needed in order to merge results across namespaces, since the interpretation of score depends on the index metric type.
  • filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
  • include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
  • include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
  • sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
Returns:

QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.

@abstractmethod
def update( self, id: str, values: Optional[List[float]] = None, set_metadata: Optional[Dict[str, Union[str, int, float, List[str], List[int], List[float]]]] = None, namespace: Optional[str] = None, sparse_values: Union[pinecone.core.openapi.db_data.model.sparse_values.SparseValues, pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict, NoneType] = None, **kwargs) -> Dict[str, Any]:
560    @abstractmethod
561    def update(
562        self,
563        id: str,
564        values: Optional[List[float]] = None,
565        set_metadata: Optional[VectorMetadataTypedDict] = None,
566        namespace: Optional[str] = None,
567        sparse_values: Optional[Union[SparseValues, SparseVectorTypedDict]] = None,
568        **kwargs,
569    ) -> Dict[str, Any]:
570        """
571        The Update operation updates vector in a namespace.
572        If a value is included, it will overwrite the previous value.
573        If a set_metadata is included,
574        the values of the fields specified in it will be added or overwrite the previous value.
575
576        API reference: https://docs.pinecone.io/reference/update
577
578        Examples:
579            >>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
580            >>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace')
581            >>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
582            >>>              namespace='my_namespace')
583            >>> index.update(id='id1', values=[1, 2, 3], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]),
584            >>>              namespace='my_namespace')
585
586        Args:
587            id (str): Vector's unique id.
588            values (List[float]): vector values to set. [optional]
589            set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]):
590                metadata to set for vector. [optional]
591            namespace (str): Namespace name where to update the vector.. [optional]
592            sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector.
593                           Expected to be either a SparseValues object or a dict of the form:
594                           {'indices': List[int], 'values': List[float]} where the lists each have the same length.
595
596
597        Returns: An empty dictionary if the update was successful.
598        """
599        pass

The Update operation updates vector in a namespace. If a value is included, it will overwrite the previous value. If a set_metadata is included, the values of the fields specified in it will be added or overwrite the previous value.

API reference: https://docs.pinecone.io/reference/update

Examples:
>>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
>>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace')
>>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
>>>              namespace='my_namespace')
>>> index.update(id='id1', values=[1, 2, 3], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]),
>>>              namespace='my_namespace')
Arguments:
  • id (str): Vector's unique id.
  • values (List[float]): vector values to set. [optional]
  • set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]): metadata to set for vector. [optional]
  • namespace (str): Namespace name where to update the vector.. [optional]
  • sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector. Expected to be either a SparseValues object or a dict of the form: {'indices': List[int], 'values': List[float]} where the lists each have the same length.

Returns: An empty dictionary if the update was successful.

@abstractmethod
def describe_index_stats( self, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, **kwargs) -> pinecone.core.openapi.db_data.model.index_description.IndexDescription:
601    @abstractmethod
602    def describe_index_stats(
603        self, filter: Optional[FilterTypedDict] = None, **kwargs
604    ) -> DescribeIndexStatsResponse:
605        """
606        The DescribeIndexStats operation returns statistics about the index's contents.
607        For example: The vector count per namespace and the number of dimensions.
608
609        API reference: https://docs.pinecone.io/reference/describe_index_stats_post
610
611        Examples:
612            >>> index.describe_index_stats()
613            >>> index.describe_index_stats(filter={'key': 'value'})
614
615        Args:
616            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
617            If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
618            See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
619
620        Returns: DescribeIndexStatsResponse object which contains stats about the index.
621        """
622        pass

The DescribeIndexStats operation returns statistics about the index's contents. For example: The vector count per namespace and the number of dimensions.

API reference: https://docs.pinecone.io/reference/describe_index_stats_post

Examples:
>>> index.describe_index_stats()
>>> index.describe_index_stats(filter={'key': 'value'})
Arguments:
  • filter (Dict[str, Union[str, float, int, bool, List, dict]]):
  • If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
  • See https: //www.pinecone.io/docs/metadata-filtering/.. [optional]

Returns: DescribeIndexStatsResponse object which contains stats about the index.

@abstractmethod
def list_paginated( self, prefix: Optional[str] = None, limit: Optional[int] = None, pagination_token: Optional[str] = None, namespace: Optional[str] = None, **kwargs) -> pinecone.core.openapi.db_data.model.list_response.ListResponse:
624    @abstractmethod
625    def list_paginated(
626        self,
627        prefix: Optional[str] = None,
628        limit: Optional[int] = None,
629        pagination_token: Optional[str] = None,
630        namespace: Optional[str] = None,
631        **kwargs,
632    ) -> ListResponse:
633        """
634        The list_paginated operation finds vectors based on an id prefix within a single namespace.
635        It returns matching ids in a paginated form, with a pagination token to fetch the next page of results.
636        This id list can then be passed to fetch or delete operations, depending on your use case.
637
638        Consider using the `list` method to avoid having to handle pagination tokens manually.
639
640        Examples:
641            >>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
642            >>> [v.id for v in results.vectors]
643            ['99', '990', '991', '992', '993']
644            >>> results.pagination.next
645            eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
646            >>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
647
648        Args:
649            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
650                                    be used with the effect of listing all ids in a namespace [optional]
651            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
652            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
653                in the response if additional results are available. [optional]
654            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
655
656        Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.
657        """
658        pass

The list_paginated operation finds vectors based on an id prefix within a single namespace. It returns matching ids in a paginated form, with a pagination token to fetch the next page of results. This id list can then be passed to fetch or delete operations, depending on your use case.

Consider using the list method to avoid having to handle pagination tokens manually.

Examples:
>>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
>>> [v.id for v in results.vectors]
['99', '990', '991', '992', '993']
>>> results.pagination.next
eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
>>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
Arguments:
  • prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will be used with the effect of listing all ids in a namespace [optional]
  • limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
  • pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned in the response if additional results are available. [optional]
  • namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]

Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.

@abstractmethod
def list(self, **kwargs):
660    @abstractmethod
661    def list(self, **kwargs):
662        """
663        The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields
664        a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your
665        behalf.
666
667        Examples:
668            >>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
669            >>>     print(ids)
670            ['99', '990', '991', '992', '993']
671            ['994', '995', '996', '997', '998']
672            ['999']
673
674        Args:
675            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
676                                    be used with the effect of listing all ids in a namespace [optional]
677            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
678            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
679                in the response if additional results are available. [optional]
680            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
681        """
682        pass

The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your behalf.

Examples:
>>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
>>>     print(ids)
['99', '990', '991', '992', '993']
['994', '995', '996', '997', '998']
['999']
Arguments:
  • prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will be used with the effect of listing all ids in a namespace [optional]
  • limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
  • pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned in the response if additional results are available. [optional]
  • namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]