pinecone.grpc

Connecting to Pinecone with GRPC

The pinecone.grpc submodule provides an alternative version of the Pinecone client that uses gRPC instead of HTTP for data operations. This provides a significant performance boost for data operations.

Installing the gRPC client

You must install extra dependencies in order to install the GRPC client.

Installing with pip

# Install the latest version
pip3 install pinecone[grpc]

# Install a specific version
pip3 install "pinecone[grpc]"==3.0.0

Installing with poetry

# Install the latest version
poetry add pinecone --extras grpc

# Install a specific version
poetry add pinecone==3.0.0 --extras grpc

Using the gRPC client

import os
from pinecone.grpc import PineconeGRPC

client = PineconeGRPC(api_key=os.environ.get("PINECONE_API_KEY"))

# From this point on, usage is identical to the HTTP client.
index = client.Index(host=os.environ("PINECONE_INDEX_HOST"))
index.query(vector=[...], top_k=10)
 1"""
 2Connecting to Pinecone with GRPC
 3
 4The `pinecone.grpc` submodule provides an alternative version of the Pinecone
 5client that uses gRPC instead of HTTP for data operations. This provides a
 6significant performance boost for data operations.
 7
 8### Installing the gRPC client
 9
10You must install extra dependencies in order to install the GRPC client.
11
12#### Installing with pip
13
14```bash
15# Install the latest version
16pip3 install pinecone[grpc]
17
18# Install a specific version
19pip3 install "pinecone[grpc]"==3.0.0
20```
21
22#### Installing with poetry
23
24```bash
25# Install the latest version
26poetry add pinecone --extras grpc
27
28# Install a specific version
29poetry add pinecone==3.0.0 --extras grpc
30```
31
32### Using the gRPC client
33
34```python
35import os
36from pinecone.grpc import PineconeGRPC
37
38client = PineconeGRPC(api_key=os.environ.get("PINECONE_API_KEY"))
39
40# From this point on, usage is identical to the HTTP client.
41index = client.Index(host=os.environ("PINECONE_INDEX_HOST"))
42index.query(vector=[...], top_k=10)
43```
44
45"""
46
47from .index_grpc import GRPCIndex
48from .pinecone import PineconeGRPC
49from .config import GRPCClientConfig
50from .future import PineconeGrpcFuture
51
52from pinecone.data.dataclasses import Vector, SparseValues
53
54from pinecone.core.grpc.protos.db_data_2025_01_pb2 import (
55    Vector as GRPCVector,
56    SparseValues as GRPCSparseValues,
57    DeleteResponse as GRPCDeleteResponse,
58)
59
60__all__ = [
61    "GRPCIndex",
62    "PineconeGRPC",
63    "GRPCDeleteResponse",
64    "GRPCClientConfig",
65    "GRPCVector",
66    "GRPCSparseValues",
67    "Vector",
68    "SparseValues",
69    "PineconeGrpcFuture",
70]
class GRPCIndex(pinecone.grpc.base.GRPCIndexBase):
 61class GRPCIndex(GRPCIndexBase):
 62    """A client for interacting with a Pinecone index via GRPC API."""
 63
 64    @property
 65    def stub_class(self):
 66        """@private"""
 67        return VectorServiceStub
 68
 69    def upsert(
 70        self,
 71        vectors: Union[List[Vector], List[GRPCVector], List[VectorTuple], List[VectorTypedDict]],
 72        async_req: bool = False,
 73        namespace: Optional[str] = None,
 74        batch_size: Optional[int] = None,
 75        show_progress: bool = True,
 76        **kwargs,
 77    ) -> Union[UpsertResponse, PineconeGrpcFuture]:
 78        """
 79        The upsert operation writes vectors into a namespace.
 80        If a new value is upserted for an existing vector id, it will overwrite the previous value.
 81
 82        Examples:
 83            >>> index.upsert([('id1', [1.0, 2.0, 3.0], {'key': 'value'}),
 84                              ('id2', [1.0, 2.0, 3.0])
 85                              ],
 86                              namespace='ns1', async_req=True)
 87            >>> index.upsert([{'id': 'id1', 'values': [1.0, 2.0, 3.0], 'metadata': {'key': 'value'}},
 88                              {'id': 'id2',
 89                                        'values': [1.0, 2.0, 3.0],
 90                                        'sparse_values': {'indices': [1, 8], 'values': [0.2, 0.4]},
 91                              ])
 92            >>> index.upsert([GRPCVector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
 93                              GRPCVector(id='id2', values=[1.0, 2.0, 3.0]),
 94                              GRPCVector(id='id3',
 95                                         values=[1.0, 2.0, 3.0],
 96                                         sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]))])
 97
 98        Args:
 99            vectors (Union[List[Vector], List[Tuple]]): A list of vectors to upsert.
100
101                     A vector can be represented by a 1) GRPCVector object, a 2) tuple or 3) a dictionary
102                     1) if a tuple is used, it must be of the form (id, values, metadata) or (id, values).
103                        where id is a string, vector is a list of floats, and metadata is a dict.
104                        Examples: ('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])
105
106                    2) if a GRPCVector object is used, a GRPCVector object must be of the form
107                        GRPCVector(id, values, metadata), where metadata is an optional argument of type
108                        Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]
109                       Examples: GRPCVector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
110                                 GRPCVector(id='id2', values=[1.0, 2.0, 3.0]),
111                                 GRPCVector(id='id3',
112                                            values=[1.0, 2.0, 3.0],
113                                            sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]))
114
115                    3) if a dictionary is used, it must be in the form
116                       {'id': str, 'values': List[float], 'sparse_values': {'indices': List[int], 'values': List[float]},
117                        'metadata': dict}
118
119                    Note: the dimension of each vector must match the dimension of the index.
120            async_req (bool): If True, the upsert operation will be performed asynchronously.
121                              Cannot be used with batch_size.
122                              Defaults to False. See: https://docs.pinecone.io/docs/performance-tuning [optional]
123            namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
124            batch_size (int): The number of vectors to upsert in each batch.
125                                Cannot be used with async_req=True.
126                               If not specified, all vectors will be upserted in a single batch. [optional]
127            show_progress (bool): Whether to show a progress bar using tqdm.
128                                  Applied only if batch_size is provided. Default is True.
129
130        Returns: UpsertResponse, contains the number of vectors upserted
131        """
132        if async_req and batch_size is not None:
133            raise ValueError(
134                "async_req is not supported when batch_size is provided."
135                "To upsert in parallel, please follow: "
136                "https://docs.pinecone.io/docs/performance-tuning"
137            )
138
139        timeout = kwargs.pop("timeout", None)
140
141        vectors = list(map(VectorFactoryGRPC.build, vectors))
142        if async_req:
143            args_dict = self._parse_non_empty_args([("namespace", namespace)])
144            request = UpsertRequest(vectors=vectors, **args_dict, **kwargs)
145            future = self.runner.run(self.stub.Upsert.future, request, timeout=timeout)
146            return PineconeGrpcFuture(future)
147
148        if batch_size is None:
149            return self._upsert_batch(vectors, namespace, timeout=timeout, **kwargs)
150
151        if not isinstance(batch_size, int) or batch_size <= 0:
152            raise ValueError("batch_size must be a positive integer")
153
154        pbar = tqdm(total=len(vectors), disable=not show_progress, desc="Upserted vectors")
155        total_upserted = 0
156        for i in range(0, len(vectors), batch_size):
157            batch_result = self._upsert_batch(
158                vectors[i : i + batch_size], namespace, timeout=timeout, **kwargs
159            )
160            pbar.update(batch_result.upserted_count)
161            # we can't use here pbar.n for the case show_progress=False
162            total_upserted += batch_result.upserted_count
163
164        return UpsertResponse(upserted_count=total_upserted)
165
166    def _upsert_batch(
167        self, vectors: List[GRPCVector], namespace: Optional[str], timeout: Optional[int], **kwargs
168    ) -> UpsertResponse:
169        args_dict = self._parse_non_empty_args([("namespace", namespace)])
170        request = UpsertRequest(vectors=vectors, **args_dict)
171        return self.runner.run(self.stub.Upsert, request, timeout=timeout, **kwargs)
172
173    def upsert_from_dataframe(
174        self,
175        df,
176        namespace: str = "",
177        batch_size: int = 500,
178        use_async_requests: bool = True,
179        show_progress: bool = True,
180    ) -> UpsertResponse:
181        """Upserts a dataframe into the index.
182
183        Args:
184            df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
185            namespace: The namespace to upsert into.
186            batch_size: The number of rows to upsert in a single batch.
187            use_async_requests: Whether to upsert multiple requests at the same time using asynchronous request mechanism.
188                                Set to `False`
189            show_progress: Whether to show a progress bar.
190        """
191        try:
192            import pandas as pd
193        except ImportError:
194            raise RuntimeError(
195                "The `pandas` package is not installed. Please install pandas to use `upsert_from_dataframe()`"
196            )
197
198        if not isinstance(df, pd.DataFrame):
199            raise ValueError(f"Only pandas dataframes are supported. Found: {type(df)}")
200
201        pbar = tqdm(total=len(df), disable=not show_progress, desc="sending upsert requests")
202        results = []
203        for chunk in self._iter_dataframe(df, batch_size=batch_size):
204            res = self.upsert(vectors=chunk, namespace=namespace, async_req=use_async_requests)
205            pbar.update(len(chunk))
206            results.append(res)
207
208        if use_async_requests:
209            cast_results = cast(List[PineconeGrpcFuture], results)
210            results = [
211                async_result.result()
212                for async_result in tqdm(
213                    iterable=cast_results,
214                    disable=not show_progress,
215                    desc="collecting async responses",
216                )
217            ]
218
219        upserted_count = 0
220        for res in results:
221            if hasattr(res, "upserted_count") and isinstance(res.upserted_count, int):
222                upserted_count += res.upserted_count
223
224        return UpsertResponse(upserted_count=upserted_count)
225
226    @staticmethod
227    def _iter_dataframe(df, batch_size):
228        for i in range(0, len(df), batch_size):
229            batch = df.iloc[i : i + batch_size].to_dict(orient="records")
230            yield batch
231
232    def delete(
233        self,
234        ids: Optional[List[str]] = None,
235        delete_all: Optional[bool] = None,
236        namespace: Optional[str] = None,
237        filter: Optional[FilterTypedDict] = None,
238        async_req: bool = False,
239        **kwargs,
240    ) -> Union[DeleteResponse, PineconeGrpcFuture]:
241        """
242        The Delete operation deletes vectors from the index, from a single namespace.
243        No error raised if the vector id does not exist.
244        Note: for any delete call, if namespace is not specified, the default namespace is used.
245
246        Delete can occur in the following mutual exclusive ways:
247        1. Delete by ids from a single namespace
248        2. Delete all vectors from a single namespace by setting delete_all to True
249        3. Delete all vectors from a single namespace by specifying a metadata filter
250           (note that for this option delete all must be set to False)
251
252        Examples:
253            >>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
254            >>> index.delete(delete_all=True, namespace='my_namespace')
255            >>> index.delete(filter={'key': 'value'}, namespace='my_namespace', async_req=True)
256
257        Args:
258            ids (List[str]): Vector ids to delete [optional]
259            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional]
260                               Default is False.
261            namespace (str): The namespace to delete vectors from [optional]
262                             If not specified, the default namespace is used.
263            filter (FilterTypedDict):
264                    If specified, the metadata filter here will be used to select the vectors to delete.
265                    This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True.
266                     See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
267            async_req (bool): If True, the delete operation will be performed asynchronously.
268                              Defaults to False. [optional]
269
270        Returns: DeleteResponse (contains no data) or a PineconeGrpcFuture object if async_req is True.
271        """
272
273        if filter is not None:
274            filter_struct = dict_to_proto_struct(filter)
275        else:
276            filter_struct = None
277
278        args_dict = self._parse_non_empty_args(
279            [
280                ("ids", ids),
281                ("delete_all", delete_all),
282                ("namespace", namespace),
283                ("filter", filter_struct),
284            ]
285        )
286        timeout = kwargs.pop("timeout", None)
287
288        request = DeleteRequest(**args_dict, **kwargs)
289        if async_req:
290            future = self.runner.run(self.stub.Delete.future, request, timeout=timeout)
291            return PineconeGrpcFuture(future)
292        else:
293            return self.runner.run(self.stub.Delete, request, timeout=timeout)
294
295    def fetch(
296        self,
297        ids: Optional[List[str]],
298        namespace: Optional[str] = None,
299        async_req: Optional[bool] = False,
300        **kwargs,
301    ) -> Union[FetchResponse, PineconeGrpcFuture]:
302        """
303        The fetch operation looks up and returns vectors, by ID, from a single namespace.
304        The returned vectors include the vector data and/or metadata.
305
306        Examples:
307            >>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
308            >>> index.fetch(ids=['id1', 'id2'])
309
310        Args:
311            ids (List[str]): The vector IDs to fetch.
312            namespace (str): The namespace to fetch vectors from.
313                             If not specified, the default namespace is used. [optional]
314
315        Returns: FetchResponse object which contains the list of Vector objects, and namespace name.
316        """
317        timeout = kwargs.pop("timeout", None)
318
319        args_dict = self._parse_non_empty_args([("namespace", namespace)])
320
321        request = FetchRequest(ids=ids, **args_dict, **kwargs)
322
323        if async_req:
324            future = self.runner.run(self.stub.Fetch.future, request, timeout=timeout)
325            return PineconeGrpcFuture(future, result_transformer=parse_fetch_response)
326        else:
327            response = self.runner.run(self.stub.Fetch, request, timeout=timeout)
328            return parse_fetch_response(response)
329
330    def query(
331        self,
332        vector: Optional[List[float]] = None,
333        id: Optional[str] = None,
334        namespace: Optional[str] = None,
335        top_k: Optional[int] = None,
336        filter: Optional[FilterTypedDict] = None,
337        include_values: Optional[bool] = None,
338        include_metadata: Optional[bool] = None,
339        sparse_vector: Optional[
340            Union[SparseValues, GRPCSparseValues, SparseVectorTypedDict]
341        ] = None,
342        async_req: Optional[bool] = False,
343        **kwargs,
344    ) -> Union[QueryResponse, PineconeGrpcFuture]:
345        """
346        The Query operation searches a namespace, using a query vector.
347        It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
348
349        Examples:
350            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
351            >>> index.query(id='id1', top_k=10, namespace='my_namespace')
352            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
353            >>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
354            >>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
355            >>>             top_k=10, namespace='my_namespace')
356            >>> index.query(vector=[1, 2, 3], sparse_vector=GRPCSparseValues([1, 2], [0.2, 0.4]),
357            >>>             top_k=10, namespace='my_namespace')
358
359        Args:
360            vector (List[float]): The query vector. This should be the same length as the dimension of the index
361                                  being queried. Each `query()` request can contain only one of the parameters
362                                  `id` or `vector`.. [optional]
363            id (str): The unique ID of the vector to be used as a query vector.
364                      Each `query()` request can contain only one of the parameters
365                      `vector` or  `id`.. [optional]
366            top_k (int): The number of results to return for each query. Must be an integer greater than 1.
367            namespace (str): The namespace to fetch vectors from.
368                             If not specified, the default namespace is used. [optional]
369            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
370                    The filter to apply. You can use vector metadata to limit your search.
371                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
372            include_values (bool): Indicates whether vector values are included in the response.
373                                   If omitted the server will use the default value of False [optional]
374            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.
375                                     If omitted the server will use the default value of False  [optional]
376            sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector.
377                            Expected to be either a SparseValues object or a dict of the form:
378                             {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
379
380        Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects,
381                 and namespace name.
382        """
383
384        if vector is not None and id is not None:
385            raise ValueError("Cannot specify both `id` and `vector`")
386
387        if filter is not None:
388            filter_struct = dict_to_proto_struct(filter)
389        else:
390            filter_struct = None
391
392        sparse_vector = SparseValuesFactory.build(sparse_vector)
393        args_dict = self._parse_non_empty_args(
394            [
395                ("vector", vector),
396                ("id", id),
397                ("namespace", namespace),
398                ("top_k", top_k),
399                ("filter", filter_struct),
400                ("include_values", include_values),
401                ("include_metadata", include_metadata),
402                ("sparse_vector", sparse_vector),
403            ]
404        )
405
406        request = QueryRequest(**args_dict)
407
408        timeout = kwargs.pop("timeout", None)
409
410        if async_req:
411            future = self.runner.run(self.stub.Query.future, request, timeout=timeout)
412            return PineconeGrpcFuture(future)
413        else:
414            response = self.runner.run(self.stub.Query, request, timeout=timeout)
415            json_response = json_format.MessageToDict(response)
416            return parse_query_response(json_response, _check_type=False)
417
418    def query_namespaces(
419        self,
420        vector: List[float],
421        namespaces: List[str],
422        metric: Literal["cosine", "euclidean", "dotproduct"],
423        top_k: Optional[int] = None,
424        filter: Optional[FilterTypedDict] = None,
425        include_values: Optional[bool] = None,
426        include_metadata: Optional[bool] = None,
427        sparse_vector: Optional[Union[GRPCSparseValues, SparseVectorTypedDict]] = None,
428        **kwargs,
429    ) -> QueryNamespacesResults:
430        if namespaces is None or len(namespaces) == 0:
431            raise ValueError("At least one namespace must be specified")
432        if len(vector) == 0:
433            raise ValueError("Query vector must not be empty")
434
435        overall_topk = top_k if top_k is not None else 10
436        aggregator = QueryResultsAggregator(top_k=overall_topk, metric=metric)
437
438        target_namespaces = set(namespaces)  # dedup namespaces
439        futures = [
440            self.threadpool_executor.submit(
441                self.query,
442                vector=vector,
443                namespace=ns,
444                top_k=overall_topk,
445                filter=filter,
446                include_values=include_values,
447                include_metadata=include_metadata,
448                sparse_vector=sparse_vector,
449                async_req=False,
450                **kwargs,
451            )
452            for ns in target_namespaces
453        ]
454
455        only_futures = cast(Iterable[Future], futures)
456        for response in as_completed(only_futures):
457            aggregator.add_results(response.result())
458
459        final_results = aggregator.get_results()
460        return final_results
461
462    def update(
463        self,
464        id: str,
465        async_req: bool = False,
466        values: Optional[List[float]] = None,
467        set_metadata: Optional[VectorMetadataTypedDict] = None,
468        namespace: Optional[str] = None,
469        sparse_values: Optional[Union[GRPCSparseValues, SparseVectorTypedDict]] = None,
470        **kwargs,
471    ) -> Union[UpdateResponse, PineconeGrpcFuture]:
472        """
473        The Update operation updates vector in a namespace.
474        If a value is included, it will overwrite the previous value.
475        If a set_metadata is included,
476        the values of the fields specified in it will be added or overwrite the previous value.
477
478        Examples:
479            >>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
480            >>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace', async_req=True)
481            >>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
482            >>>              namespace='my_namespace')
483            >>> index.update(id='id1', values=[1, 2, 3], sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]),
484            >>>              namespace='my_namespace')
485
486        Args:
487            id (str): Vector's unique id.
488            async_req (bool): If True, the update operation will be performed asynchronously.
489                              Defaults to False. [optional]
490            values (List[float]): vector values to set. [optional]
491            set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]):
492                metadata to set for vector. [optional]
493            namespace (str): Namespace name where to update the vector.. [optional]
494            sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector.
495                           Expected to be either a GRPCSparseValues object or a dict of the form:
496                           {'indices': List[int], 'values': List[float]} where the lists each have the same length.
497
498
499        Returns: UpdateResponse (contains no data) or a PineconeGrpcFuture object if async_req is True.
500        """
501        if set_metadata is not None:
502            set_metadata_struct = dict_to_proto_struct(set_metadata)
503        else:
504            set_metadata_struct = None
505
506        timeout = kwargs.pop("timeout", None)
507        sparse_values = SparseValuesFactory.build(sparse_values)
508        args_dict = self._parse_non_empty_args(
509            [
510                ("values", values),
511                ("set_metadata", set_metadata_struct),
512                ("namespace", namespace),
513                ("sparse_values", sparse_values),
514            ]
515        )
516
517        request = UpdateRequest(id=id, **args_dict)
518        if async_req:
519            future = self.runner.run(self.stub.Update.future, request, timeout=timeout)
520            return PineconeGrpcFuture(future)
521        else:
522            return self.runner.run(self.stub.Update, request, timeout=timeout)
523
524    def list_paginated(
525        self,
526        prefix: Optional[str] = None,
527        limit: Optional[int] = None,
528        pagination_token: Optional[str] = None,
529        namespace: Optional[str] = None,
530        **kwargs,
531    ) -> SimpleListResponse:
532        """
533        The list_paginated operation finds vectors based on an id prefix within a single namespace.
534        It returns matching ids in a paginated form, with a pagination token to fetch the next page of results.
535        This id list can then be passed to fetch or delete operations, depending on your use case.
536
537        Consider using the `list` method to avoid having to handle pagination tokens manually.
538
539        Examples:
540            >>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
541            >>> [v.id for v in results.vectors]
542            ['99', '990', '991', '992', '993']
543            >>> results.pagination.next
544            eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
545            >>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
546
547        Args:
548            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
549                                    be used with the effect of listing all ids in a namespace [optional]
550            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
551            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
552                in the response if additional results are available. [optional]
553            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
554
555        Returns: SimpleListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.
556        """
557        args_dict = self._parse_non_empty_args(
558            [
559                ("prefix", prefix),
560                ("limit", limit),
561                ("namespace", namespace),
562                ("pagination_token", pagination_token),
563            ]
564        )
565        request = ListRequest(**args_dict, **kwargs)
566        timeout = kwargs.pop("timeout", None)
567        response = self.runner.run(self.stub.List, request, timeout=timeout)
568
569        if response.pagination and response.pagination.next != "":
570            pagination = Pagination(next=response.pagination.next)
571        else:
572            pagination = None
573
574        return SimpleListResponse(
575            namespace=response.namespace, vectors=response.vectors, pagination=pagination
576        )
577
578    def list(self, **kwargs):
579        """
580        The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields
581        a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your
582        behalf.
583
584        Examples:
585            >>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
586            >>>     print(ids)
587            ['99', '990', '991', '992', '993']
588            ['994', '995', '996', '997', '998']
589            ['999']
590
591        Args:
592            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
593                                    be used with the effect of listing all ids in a namespace [optional]
594            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
595            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
596                in the response if additional results are available. [optional]
597            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
598        """
599        done = False
600        while not done:
601            try:
602                results = self.list_paginated(**kwargs)
603            except Exception as e:
604                raise e
605
606            if len(results.vectors) > 0:
607                yield [v.id for v in results.vectors]
608
609            if results.pagination and results.pagination.next:
610                kwargs.update({"pagination_token": results.pagination.next})
611            else:
612                done = True
613
614    def describe_index_stats(
615        self, filter: Optional[FilterTypedDict] = None, **kwargs
616    ) -> DescribeIndexStatsResponse:
617        """
618        The DescribeIndexStats operation returns statistics about the index's contents.
619        For example: The vector count per namespace and the number of dimensions.
620
621        Examples:
622            >>> index.describe_index_stats()
623            >>> index.describe_index_stats(filter={'key': 'value'})
624
625        Args:
626            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
627            If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
628            See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
629
630        Returns: DescribeIndexStatsResponse object which contains stats about the index.
631        """
632        if filter is not None:
633            filter_struct = dict_to_proto_struct(filter)
634        else:
635            filter_struct = None
636        args_dict = self._parse_non_empty_args([("filter", filter_struct)])
637        timeout = kwargs.pop("timeout", None)
638
639        request = DescribeIndexStatsRequest(**args_dict)
640        response = self.runner.run(self.stub.DescribeIndexStats, request, timeout=timeout)
641        json_response = json_format.MessageToDict(response)
642        return parse_stats_response(json_response)
643
644    @staticmethod
645    def _parse_non_empty_args(args: List[Tuple[str, Any]]) -> Dict[str, Any]:
646        return {arg_name: val for arg_name, val in args if val is not None}

A client for interacting with a Pinecone index via GRPC API.

def upsert( self, vectors: Union[List[Vector], List[db_data_2025_01_pb2.Vector], List[Tuple[str, List[float]]], List[pinecone.data.types.vector_typed_dict.VectorTypedDict]], async_req: bool = False, namespace: Optional[str] = None, batch_size: Optional[int] = None, show_progress: bool = True, **kwargs) -> Union[db_data_2025_01_pb2.UpsertResponse, PineconeGrpcFuture]:
 69    def upsert(
 70        self,
 71        vectors: Union[List[Vector], List[GRPCVector], List[VectorTuple], List[VectorTypedDict]],
 72        async_req: bool = False,
 73        namespace: Optional[str] = None,
 74        batch_size: Optional[int] = None,
 75        show_progress: bool = True,
 76        **kwargs,
 77    ) -> Union[UpsertResponse, PineconeGrpcFuture]:
 78        """
 79        The upsert operation writes vectors into a namespace.
 80        If a new value is upserted for an existing vector id, it will overwrite the previous value.
 81
 82        Examples:
 83            >>> index.upsert([('id1', [1.0, 2.0, 3.0], {'key': 'value'}),
 84                              ('id2', [1.0, 2.0, 3.0])
 85                              ],
 86                              namespace='ns1', async_req=True)
 87            >>> index.upsert([{'id': 'id1', 'values': [1.0, 2.0, 3.0], 'metadata': {'key': 'value'}},
 88                              {'id': 'id2',
 89                                        'values': [1.0, 2.0, 3.0],
 90                                        'sparse_values': {'indices': [1, 8], 'values': [0.2, 0.4]},
 91                              ])
 92            >>> index.upsert([GRPCVector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
 93                              GRPCVector(id='id2', values=[1.0, 2.0, 3.0]),
 94                              GRPCVector(id='id3',
 95                                         values=[1.0, 2.0, 3.0],
 96                                         sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]))])
 97
 98        Args:
 99            vectors (Union[List[Vector], List[Tuple]]): A list of vectors to upsert.
100
101                     A vector can be represented by a 1) GRPCVector object, a 2) tuple or 3) a dictionary
102                     1) if a tuple is used, it must be of the form (id, values, metadata) or (id, values).
103                        where id is a string, vector is a list of floats, and metadata is a dict.
104                        Examples: ('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])
105
106                    2) if a GRPCVector object is used, a GRPCVector object must be of the form
107                        GRPCVector(id, values, metadata), where metadata is an optional argument of type
108                        Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]
109                       Examples: GRPCVector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
110                                 GRPCVector(id='id2', values=[1.0, 2.0, 3.0]),
111                                 GRPCVector(id='id3',
112                                            values=[1.0, 2.0, 3.0],
113                                            sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]))
114
115                    3) if a dictionary is used, it must be in the form
116                       {'id': str, 'values': List[float], 'sparse_values': {'indices': List[int], 'values': List[float]},
117                        'metadata': dict}
118
119                    Note: the dimension of each vector must match the dimension of the index.
120            async_req (bool): If True, the upsert operation will be performed asynchronously.
121                              Cannot be used with batch_size.
122                              Defaults to False. See: https://docs.pinecone.io/docs/performance-tuning [optional]
123            namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
124            batch_size (int): The number of vectors to upsert in each batch.
125                                Cannot be used with async_req=True.
126                               If not specified, all vectors will be upserted in a single batch. [optional]
127            show_progress (bool): Whether to show a progress bar using tqdm.
128                                  Applied only if batch_size is provided. Default is True.
129
130        Returns: UpsertResponse, contains the number of vectors upserted
131        """
132        if async_req and batch_size is not None:
133            raise ValueError(
134                "async_req is not supported when batch_size is provided."
135                "To upsert in parallel, please follow: "
136                "https://docs.pinecone.io/docs/performance-tuning"
137            )
138
139        timeout = kwargs.pop("timeout", None)
140
141        vectors = list(map(VectorFactoryGRPC.build, vectors))
142        if async_req:
143            args_dict = self._parse_non_empty_args([("namespace", namespace)])
144            request = UpsertRequest(vectors=vectors, **args_dict, **kwargs)
145            future = self.runner.run(self.stub.Upsert.future, request, timeout=timeout)
146            return PineconeGrpcFuture(future)
147
148        if batch_size is None:
149            return self._upsert_batch(vectors, namespace, timeout=timeout, **kwargs)
150
151        if not isinstance(batch_size, int) or batch_size <= 0:
152            raise ValueError("batch_size must be a positive integer")
153
154        pbar = tqdm(total=len(vectors), disable=not show_progress, desc="Upserted vectors")
155        total_upserted = 0
156        for i in range(0, len(vectors), batch_size):
157            batch_result = self._upsert_batch(
158                vectors[i : i + batch_size], namespace, timeout=timeout, **kwargs
159            )
160            pbar.update(batch_result.upserted_count)
161            # we can't use here pbar.n for the case show_progress=False
162            total_upserted += batch_result.upserted_count
163
164        return UpsertResponse(upserted_count=total_upserted)

The upsert operation writes vectors into a namespace. If a new value is upserted for an existing vector id, it will overwrite the previous value.

Examples:
>>> index.upsert([('id1', [1.0, 2.0, 3.0], {'key': 'value'}),
                  ('id2', [1.0, 2.0, 3.0])
                  ],
                  namespace='ns1', async_req=True)
>>> index.upsert([{'id': 'id1', 'values': [1.0, 2.0, 3.0], 'metadata': {'key': 'value'}},
                  {'id': 'id2',
                            'values': [1.0, 2.0, 3.0],
                            'sparse_values': {'indices': [1, 8], 'values': [0.2, 0.4]},
                  ])
>>> index.upsert([GRPCVector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
                  GRPCVector(id='id2', values=[1.0, 2.0, 3.0]),
                  GRPCVector(id='id3',
                             values=[1.0, 2.0, 3.0],
                             sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]))])
Arguments:
  • vectors (Union[List[Vector], List[Tuple]]): A list of vectors to upsert.

    A vector can be represented by a 1) GRPCVector object, a 2) tuple or 3) a dictionary 1) if a tuple is used, it must be of the form (id, values, metadata) or (id, values). where id is a string, vector is a list of floats, and metadata is a dict. Examples: ('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])

    2) if a GRPCVector object is used, a GRPCVector object must be of the form GRPCVector(id, values, metadata), where metadata is an optional argument of type Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]] Examples: GRPCVector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}), GRPCVector(id='id2', values=[1.0, 2.0, 3.0]), GRPCVector(id='id3', values=[1.0, 2.0, 3.0], sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]))

    3) if a dictionary is used, it must be in the form {'id': str, 'values': List[float], 'sparse_values': {'indices': List[int], 'values': List[float]}, 'metadata': dict}

    Note: the dimension of each vector must match the dimension of the index.

  • async_req (bool): If True, the upsert operation will be performed asynchronously. Cannot be used with batch_size. Defaults to False. See: https://docs.pinecone.io/docs/performance-tuning [optional]
  • namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
  • batch_size (int): The number of vectors to upsert in each batch. Cannot be used with async_req=True. If not specified, all vectors will be upserted in a single batch. [optional]
  • show_progress (bool): Whether to show a progress bar using tqdm. Applied only if batch_size is provided. Default is True.

Returns: UpsertResponse, contains the number of vectors upserted

def upsert_from_dataframe( self, df, namespace: str = '', batch_size: int = 500, use_async_requests: bool = True, show_progress: bool = True) -> db_data_2025_01_pb2.UpsertResponse:
173    def upsert_from_dataframe(
174        self,
175        df,
176        namespace: str = "",
177        batch_size: int = 500,
178        use_async_requests: bool = True,
179        show_progress: bool = True,
180    ) -> UpsertResponse:
181        """Upserts a dataframe into the index.
182
183        Args:
184            df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
185            namespace: The namespace to upsert into.
186            batch_size: The number of rows to upsert in a single batch.
187            use_async_requests: Whether to upsert multiple requests at the same time using asynchronous request mechanism.
188                                Set to `False`
189            show_progress: Whether to show a progress bar.
190        """
191        try:
192            import pandas as pd
193        except ImportError:
194            raise RuntimeError(
195                "The `pandas` package is not installed. Please install pandas to use `upsert_from_dataframe()`"
196            )
197
198        if not isinstance(df, pd.DataFrame):
199            raise ValueError(f"Only pandas dataframes are supported. Found: {type(df)}")
200
201        pbar = tqdm(total=len(df), disable=not show_progress, desc="sending upsert requests")
202        results = []
203        for chunk in self._iter_dataframe(df, batch_size=batch_size):
204            res = self.upsert(vectors=chunk, namespace=namespace, async_req=use_async_requests)
205            pbar.update(len(chunk))
206            results.append(res)
207
208        if use_async_requests:
209            cast_results = cast(List[PineconeGrpcFuture], results)
210            results = [
211                async_result.result()
212                for async_result in tqdm(
213                    iterable=cast_results,
214                    disable=not show_progress,
215                    desc="collecting async responses",
216                )
217            ]
218
219        upserted_count = 0
220        for res in results:
221            if hasattr(res, "upserted_count") and isinstance(res.upserted_count, int):
222                upserted_count += res.upserted_count
223
224        return UpsertResponse(upserted_count=upserted_count)

Upserts a dataframe into the index.

Arguments:
  • df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
  • namespace: The namespace to upsert into.
  • batch_size: The number of rows to upsert in a single batch.
  • use_async_requests: Whether to upsert multiple requests at the same time using asynchronous request mechanism. Set to False
  • show_progress: Whether to show a progress bar.
def delete( self, ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, namespace: Optional[str] = None, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, async_req: bool = False, **kwargs) -> Union[db_data_2025_01_pb2.DeleteResponse, PineconeGrpcFuture]:
232    def delete(
233        self,
234        ids: Optional[List[str]] = None,
235        delete_all: Optional[bool] = None,
236        namespace: Optional[str] = None,
237        filter: Optional[FilterTypedDict] = None,
238        async_req: bool = False,
239        **kwargs,
240    ) -> Union[DeleteResponse, PineconeGrpcFuture]:
241        """
242        The Delete operation deletes vectors from the index, from a single namespace.
243        No error raised if the vector id does not exist.
244        Note: for any delete call, if namespace is not specified, the default namespace is used.
245
246        Delete can occur in the following mutual exclusive ways:
247        1. Delete by ids from a single namespace
248        2. Delete all vectors from a single namespace by setting delete_all to True
249        3. Delete all vectors from a single namespace by specifying a metadata filter
250           (note that for this option delete all must be set to False)
251
252        Examples:
253            >>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
254            >>> index.delete(delete_all=True, namespace='my_namespace')
255            >>> index.delete(filter={'key': 'value'}, namespace='my_namespace', async_req=True)
256
257        Args:
258            ids (List[str]): Vector ids to delete [optional]
259            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional]
260                               Default is False.
261            namespace (str): The namespace to delete vectors from [optional]
262                             If not specified, the default namespace is used.
263            filter (FilterTypedDict):
264                    If specified, the metadata filter here will be used to select the vectors to delete.
265                    This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True.
266                     See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
267            async_req (bool): If True, the delete operation will be performed asynchronously.
268                              Defaults to False. [optional]
269
270        Returns: DeleteResponse (contains no data) or a PineconeGrpcFuture object if async_req is True.
271        """
272
273        if filter is not None:
274            filter_struct = dict_to_proto_struct(filter)
275        else:
276            filter_struct = None
277
278        args_dict = self._parse_non_empty_args(
279            [
280                ("ids", ids),
281                ("delete_all", delete_all),
282                ("namespace", namespace),
283                ("filter", filter_struct),
284            ]
285        )
286        timeout = kwargs.pop("timeout", None)
287
288        request = DeleteRequest(**args_dict, **kwargs)
289        if async_req:
290            future = self.runner.run(self.stub.Delete.future, request, timeout=timeout)
291            return PineconeGrpcFuture(future)
292        else:
293            return self.runner.run(self.stub.Delete, request, timeout=timeout)

The Delete operation deletes vectors from the index, from a single namespace. No error raised if the vector id does not exist. Note: for any delete call, if namespace is not specified, the default namespace is used.

Delete can occur in the following mutual exclusive ways:

  1. Delete by ids from a single namespace
  2. Delete all vectors from a single namespace by setting delete_all to True
  3. Delete all vectors from a single namespace by specifying a metadata filter (note that for this option delete all must be set to False)
Examples:
>>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
>>> index.delete(delete_all=True, namespace='my_namespace')
>>> index.delete(filter={'key': 'value'}, namespace='my_namespace', async_req=True)
Arguments:
  • ids (List[str]): Vector ids to delete [optional]
  • delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional] Default is False.
  • namespace (str): The namespace to delete vectors from [optional] If not specified, the default namespace is used.
  • filter (FilterTypedDict): If specified, the metadata filter here will be used to select the vectors to delete. This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True. See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
  • async_req (bool): If True, the delete operation will be performed asynchronously. Defaults to False. [optional]

Returns: DeleteResponse (contains no data) or a PineconeGrpcFuture object if async_req is True.

def fetch( self, ids: Optional[List[str]], namespace: Optional[str] = None, async_req: Optional[bool] = False, **kwargs) -> Union[pinecone.core.openapi.db_data.model.fetch_response.FetchResponse, PineconeGrpcFuture]:
295    def fetch(
296        self,
297        ids: Optional[List[str]],
298        namespace: Optional[str] = None,
299        async_req: Optional[bool] = False,
300        **kwargs,
301    ) -> Union[FetchResponse, PineconeGrpcFuture]:
302        """
303        The fetch operation looks up and returns vectors, by ID, from a single namespace.
304        The returned vectors include the vector data and/or metadata.
305
306        Examples:
307            >>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
308            >>> index.fetch(ids=['id1', 'id2'])
309
310        Args:
311            ids (List[str]): The vector IDs to fetch.
312            namespace (str): The namespace to fetch vectors from.
313                             If not specified, the default namespace is used. [optional]
314
315        Returns: FetchResponse object which contains the list of Vector objects, and namespace name.
316        """
317        timeout = kwargs.pop("timeout", None)
318
319        args_dict = self._parse_non_empty_args([("namespace", namespace)])
320
321        request = FetchRequest(ids=ids, **args_dict, **kwargs)
322
323        if async_req:
324            future = self.runner.run(self.stub.Fetch.future, request, timeout=timeout)
325            return PineconeGrpcFuture(future, result_transformer=parse_fetch_response)
326        else:
327            response = self.runner.run(self.stub.Fetch, request, timeout=timeout)
328            return parse_fetch_response(response)

The fetch operation looks up and returns vectors, by ID, from a single namespace. The returned vectors include the vector data and/or metadata.

Examples:
>>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
>>> index.fetch(ids=['id1', 'id2'])
Arguments:
  • ids (List[str]): The vector IDs to fetch.
  • namespace (str): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]

Returns: FetchResponse object which contains the list of Vector objects, and namespace name.

def query( self, vector: Optional[List[float]] = None, id: Optional[str] = None, namespace: Optional[str] = None, top_k: Optional[int] = None, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, include_values: Optional[bool] = None, include_metadata: Optional[bool] = None, sparse_vector: Union[SparseValues, db_data_2025_01_pb2.SparseValues, pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict, NoneType] = None, async_req: Optional[bool] = False, **kwargs) -> Union[pinecone.core.openapi.db_data.model.query_response.QueryResponse, PineconeGrpcFuture]:
330    def query(
331        self,
332        vector: Optional[List[float]] = None,
333        id: Optional[str] = None,
334        namespace: Optional[str] = None,
335        top_k: Optional[int] = None,
336        filter: Optional[FilterTypedDict] = None,
337        include_values: Optional[bool] = None,
338        include_metadata: Optional[bool] = None,
339        sparse_vector: Optional[
340            Union[SparseValues, GRPCSparseValues, SparseVectorTypedDict]
341        ] = None,
342        async_req: Optional[bool] = False,
343        **kwargs,
344    ) -> Union[QueryResponse, PineconeGrpcFuture]:
345        """
346        The Query operation searches a namespace, using a query vector.
347        It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
348
349        Examples:
350            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
351            >>> index.query(id='id1', top_k=10, namespace='my_namespace')
352            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
353            >>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
354            >>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
355            >>>             top_k=10, namespace='my_namespace')
356            >>> index.query(vector=[1, 2, 3], sparse_vector=GRPCSparseValues([1, 2], [0.2, 0.4]),
357            >>>             top_k=10, namespace='my_namespace')
358
359        Args:
360            vector (List[float]): The query vector. This should be the same length as the dimension of the index
361                                  being queried. Each `query()` request can contain only one of the parameters
362                                  `id` or `vector`.. [optional]
363            id (str): The unique ID of the vector to be used as a query vector.
364                      Each `query()` request can contain only one of the parameters
365                      `vector` or  `id`.. [optional]
366            top_k (int): The number of results to return for each query. Must be an integer greater than 1.
367            namespace (str): The namespace to fetch vectors from.
368                             If not specified, the default namespace is used. [optional]
369            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
370                    The filter to apply. You can use vector metadata to limit your search.
371                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
372            include_values (bool): Indicates whether vector values are included in the response.
373                                   If omitted the server will use the default value of False [optional]
374            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.
375                                     If omitted the server will use the default value of False  [optional]
376            sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector.
377                            Expected to be either a SparseValues object or a dict of the form:
378                             {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
379
380        Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects,
381                 and namespace name.
382        """
383
384        if vector is not None and id is not None:
385            raise ValueError("Cannot specify both `id` and `vector`")
386
387        if filter is not None:
388            filter_struct = dict_to_proto_struct(filter)
389        else:
390            filter_struct = None
391
392        sparse_vector = SparseValuesFactory.build(sparse_vector)
393        args_dict = self._parse_non_empty_args(
394            [
395                ("vector", vector),
396                ("id", id),
397                ("namespace", namespace),
398                ("top_k", top_k),
399                ("filter", filter_struct),
400                ("include_values", include_values),
401                ("include_metadata", include_metadata),
402                ("sparse_vector", sparse_vector),
403            ]
404        )
405
406        request = QueryRequest(**args_dict)
407
408        timeout = kwargs.pop("timeout", None)
409
410        if async_req:
411            future = self.runner.run(self.stub.Query.future, request, timeout=timeout)
412            return PineconeGrpcFuture(future)
413        else:
414            response = self.runner.run(self.stub.Query, request, timeout=timeout)
415            json_response = json_format.MessageToDict(response)
416            return parse_query_response(json_response, _check_type=False)

The Query operation searches a namespace, using a query vector. It retrieves the ids of the most similar items in a namespace, along with their similarity scores.

Examples:
>>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
>>> index.query(id='id1', top_k=10, namespace='my_namespace')
>>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
>>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
>>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
>>>             top_k=10, namespace='my_namespace')
>>> index.query(vector=[1, 2, 3], sparse_vector=GRPCSparseValues([1, 2], [0.2, 0.4]),
>>>             top_k=10, namespace='my_namespace')
Arguments:
  • vector (List[float]): The query vector. This should be the same length as the dimension of the index being queried. Each query() request can contain only one of the parameters id or vector.. [optional]
  • id (str): The unique ID of the vector to be used as a query vector. Each query() request can contain only one of the parameters vector or id.. [optional]
  • top_k (int): The number of results to return for each query. Must be an integer greater than 1.
  • namespace (str): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
  • filter (Dict[str, Union[str, float, int, bool, List, dict]]): The filter to apply. You can use vector metadata to limit your search. See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
  • include_values (bool): Indicates whether vector values are included in the response. If omitted the server will use the default value of False [optional]
  • include_metadata (bool): Indicates whether metadata is included in the response as well as the ids. If omitted the server will use the default value of False [optional]
  • sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector. Expected to be either a SparseValues object or a dict of the form: {'indices': List[int], 'values': List[float]}, where the lists each have the same length.

Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects, and namespace name.

def query_namespaces( self, vector: List[float], namespaces: List[str], metric: Literal['cosine', 'euclidean', 'dotproduct'], top_k: Optional[int] = None, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, include_values: Optional[bool] = None, include_metadata: Optional[bool] = None, sparse_vector: Union[db_data_2025_01_pb2.SparseValues, pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict, NoneType] = None, **kwargs) -> pinecone.data.query_results_aggregator.QueryNamespacesResults:
418    def query_namespaces(
419        self,
420        vector: List[float],
421        namespaces: List[str],
422        metric: Literal["cosine", "euclidean", "dotproduct"],
423        top_k: Optional[int] = None,
424        filter: Optional[FilterTypedDict] = None,
425        include_values: Optional[bool] = None,
426        include_metadata: Optional[bool] = None,
427        sparse_vector: Optional[Union[GRPCSparseValues, SparseVectorTypedDict]] = None,
428        **kwargs,
429    ) -> QueryNamespacesResults:
430        if namespaces is None or len(namespaces) == 0:
431            raise ValueError("At least one namespace must be specified")
432        if len(vector) == 0:
433            raise ValueError("Query vector must not be empty")
434
435        overall_topk = top_k if top_k is not None else 10
436        aggregator = QueryResultsAggregator(top_k=overall_topk, metric=metric)
437
438        target_namespaces = set(namespaces)  # dedup namespaces
439        futures = [
440            self.threadpool_executor.submit(
441                self.query,
442                vector=vector,
443                namespace=ns,
444                top_k=overall_topk,
445                filter=filter,
446                include_values=include_values,
447                include_metadata=include_metadata,
448                sparse_vector=sparse_vector,
449                async_req=False,
450                **kwargs,
451            )
452            for ns in target_namespaces
453        ]
454
455        only_futures = cast(Iterable[Future], futures)
456        for response in as_completed(only_futures):
457            aggregator.add_results(response.result())
458
459        final_results = aggregator.get_results()
460        return final_results
def update( self, id: str, async_req: bool = False, values: Optional[List[float]] = None, set_metadata: Optional[Dict[str, Union[str, int, float, List[str], List[int], List[float]]]] = None, namespace: Optional[str] = None, sparse_values: Union[db_data_2025_01_pb2.SparseValues, pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict, NoneType] = None, **kwargs) -> Union[db_data_2025_01_pb2.UpdateResponse, PineconeGrpcFuture]:
462    def update(
463        self,
464        id: str,
465        async_req: bool = False,
466        values: Optional[List[float]] = None,
467        set_metadata: Optional[VectorMetadataTypedDict] = None,
468        namespace: Optional[str] = None,
469        sparse_values: Optional[Union[GRPCSparseValues, SparseVectorTypedDict]] = None,
470        **kwargs,
471    ) -> Union[UpdateResponse, PineconeGrpcFuture]:
472        """
473        The Update operation updates vector in a namespace.
474        If a value is included, it will overwrite the previous value.
475        If a set_metadata is included,
476        the values of the fields specified in it will be added or overwrite the previous value.
477
478        Examples:
479            >>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
480            >>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace', async_req=True)
481            >>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
482            >>>              namespace='my_namespace')
483            >>> index.update(id='id1', values=[1, 2, 3], sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]),
484            >>>              namespace='my_namespace')
485
486        Args:
487            id (str): Vector's unique id.
488            async_req (bool): If True, the update operation will be performed asynchronously.
489                              Defaults to False. [optional]
490            values (List[float]): vector values to set. [optional]
491            set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]):
492                metadata to set for vector. [optional]
493            namespace (str): Namespace name where to update the vector.. [optional]
494            sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector.
495                           Expected to be either a GRPCSparseValues object or a dict of the form:
496                           {'indices': List[int], 'values': List[float]} where the lists each have the same length.
497
498
499        Returns: UpdateResponse (contains no data) or a PineconeGrpcFuture object if async_req is True.
500        """
501        if set_metadata is not None:
502            set_metadata_struct = dict_to_proto_struct(set_metadata)
503        else:
504            set_metadata_struct = None
505
506        timeout = kwargs.pop("timeout", None)
507        sparse_values = SparseValuesFactory.build(sparse_values)
508        args_dict = self._parse_non_empty_args(
509            [
510                ("values", values),
511                ("set_metadata", set_metadata_struct),
512                ("namespace", namespace),
513                ("sparse_values", sparse_values),
514            ]
515        )
516
517        request = UpdateRequest(id=id, **args_dict)
518        if async_req:
519            future = self.runner.run(self.stub.Update.future, request, timeout=timeout)
520            return PineconeGrpcFuture(future)
521        else:
522            return self.runner.run(self.stub.Update, request, timeout=timeout)

The Update operation updates vector in a namespace. If a value is included, it will overwrite the previous value. If a set_metadata is included, the values of the fields specified in it will be added or overwrite the previous value.

Examples:
>>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
>>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace', async_req=True)
>>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
>>>              namespace='my_namespace')
>>> index.update(id='id1', values=[1, 2, 3], sparse_values=GRPCSparseValues(indices=[1, 2], values=[0.2, 0.4]),
>>>              namespace='my_namespace')
Arguments:
  • id (str): Vector's unique id.
  • async_req (bool): If True, the update operation will be performed asynchronously. Defaults to False. [optional]
  • values (List[float]): vector values to set. [optional]
  • set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]): metadata to set for vector. [optional]
  • namespace (str): Namespace name where to update the vector.. [optional]
  • sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector. Expected to be either a GRPCSparseValues object or a dict of the form: {'indices': List[int], 'values': List[float]} where the lists each have the same length.

Returns: UpdateResponse (contains no data) or a PineconeGrpcFuture object if async_req is True.

def list_paginated( self, prefix: Optional[str] = None, limit: Optional[int] = None, pagination_token: Optional[str] = None, namespace: Optional[str] = None, **kwargs) -> pinecone.models.list_response.ListResponse:
524    def list_paginated(
525        self,
526        prefix: Optional[str] = None,
527        limit: Optional[int] = None,
528        pagination_token: Optional[str] = None,
529        namespace: Optional[str] = None,
530        **kwargs,
531    ) -> SimpleListResponse:
532        """
533        The list_paginated operation finds vectors based on an id prefix within a single namespace.
534        It returns matching ids in a paginated form, with a pagination token to fetch the next page of results.
535        This id list can then be passed to fetch or delete operations, depending on your use case.
536
537        Consider using the `list` method to avoid having to handle pagination tokens manually.
538
539        Examples:
540            >>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
541            >>> [v.id for v in results.vectors]
542            ['99', '990', '991', '992', '993']
543            >>> results.pagination.next
544            eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
545            >>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
546
547        Args:
548            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
549                                    be used with the effect of listing all ids in a namespace [optional]
550            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
551            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
552                in the response if additional results are available. [optional]
553            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
554
555        Returns: SimpleListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.
556        """
557        args_dict = self._parse_non_empty_args(
558            [
559                ("prefix", prefix),
560                ("limit", limit),
561                ("namespace", namespace),
562                ("pagination_token", pagination_token),
563            ]
564        )
565        request = ListRequest(**args_dict, **kwargs)
566        timeout = kwargs.pop("timeout", None)
567        response = self.runner.run(self.stub.List, request, timeout=timeout)
568
569        if response.pagination and response.pagination.next != "":
570            pagination = Pagination(next=response.pagination.next)
571        else:
572            pagination = None
573
574        return SimpleListResponse(
575            namespace=response.namespace, vectors=response.vectors, pagination=pagination
576        )

The list_paginated operation finds vectors based on an id prefix within a single namespace. It returns matching ids in a paginated form, with a pagination token to fetch the next page of results. This id list can then be passed to fetch or delete operations, depending on your use case.

Consider using the list method to avoid having to handle pagination tokens manually.

Examples:
>>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
>>> [v.id for v in results.vectors]
['99', '990', '991', '992', '993']
>>> results.pagination.next
eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
>>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
Arguments:
  • prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will be used with the effect of listing all ids in a namespace [optional]
  • limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
  • pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned in the response if additional results are available. [optional]
  • namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]

Returns: SimpleListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.

def list(self, **kwargs):
578    def list(self, **kwargs):
579        """
580        The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields
581        a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your
582        behalf.
583
584        Examples:
585            >>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
586            >>>     print(ids)
587            ['99', '990', '991', '992', '993']
588            ['994', '995', '996', '997', '998']
589            ['999']
590
591        Args:
592            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
593                                    be used with the effect of listing all ids in a namespace [optional]
594            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
595            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
596                in the response if additional results are available. [optional]
597            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
598        """
599        done = False
600        while not done:
601            try:
602                results = self.list_paginated(**kwargs)
603            except Exception as e:
604                raise e
605
606            if len(results.vectors) > 0:
607                yield [v.id for v in results.vectors]
608
609            if results.pagination and results.pagination.next:
610                kwargs.update({"pagination_token": results.pagination.next})
611            else:
612                done = True

The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your behalf.

Examples:
>>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
>>>     print(ids)
['99', '990', '991', '992', '993']
['994', '995', '996', '997', '998']
['999']
Arguments:
  • prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will be used with the effect of listing all ids in a namespace [optional]
  • limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
  • pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned in the response if additional results are available. [optional]
  • namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
def describe_index_stats( self, filter: Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]], Dict[Literal['$and'], List[Union[Dict[str, Union[str, int, float, bool]], Dict[Literal['$eq'], Union[str, int, float, bool]], Dict[Literal['$ne'], Union[str, int, float, bool]], Dict[Literal['$gt'], Union[int, float]], Dict[Literal['$gte'], Union[int, float]], Dict[Literal['$lt'], Union[int, float]], Dict[Literal['$lte'], Union[int, float]], Dict[Literal['$in'], List[Union[str, int, float, bool]]], Dict[Literal['$nin'], List[Union[str, int, float, bool]]]]]], NoneType] = None, **kwargs) -> pinecone.core.openapi.db_data.model.index_description.IndexDescription:
614    def describe_index_stats(
615        self, filter: Optional[FilterTypedDict] = None, **kwargs
616    ) -> DescribeIndexStatsResponse:
617        """
618        The DescribeIndexStats operation returns statistics about the index's contents.
619        For example: The vector count per namespace and the number of dimensions.
620
621        Examples:
622            >>> index.describe_index_stats()
623            >>> index.describe_index_stats(filter={'key': 'value'})
624
625        Args:
626            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
627            If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
628            See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
629
630        Returns: DescribeIndexStatsResponse object which contains stats about the index.
631        """
632        if filter is not None:
633            filter_struct = dict_to_proto_struct(filter)
634        else:
635            filter_struct = None
636        args_dict = self._parse_non_empty_args([("filter", filter_struct)])
637        timeout = kwargs.pop("timeout", None)
638
639        request = DescribeIndexStatsRequest(**args_dict)
640        response = self.runner.run(self.stub.DescribeIndexStats, request, timeout=timeout)
641        json_response = json_format.MessageToDict(response)
642        return parse_stats_response(json_response)

The DescribeIndexStats operation returns statistics about the index's contents. For example: The vector count per namespace and the number of dimensions.

Examples:
>>> index.describe_index_stats()
>>> index.describe_index_stats(filter={'key': 'value'})
Arguments:
  • filter (Dict[str, Union[str, float, int, bool, List, dict]]):
  • If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
  • See https: //www.pinecone.io/docs/metadata-filtering/.. [optional]

Returns: DescribeIndexStatsResponse object which contains stats about the index.

Inherited Members
pinecone.grpc.base.GRPCIndexBase
GRPCIndexBase
config
grpc_client_config
pool_threads
runner
channel_factory
stub
threadpool_executor
channel
grpc_server_on
close
class PineconeGRPC(pinecone.control.pinecone.Pinecone):
  7class PineconeGRPC(Pinecone):
  8    """
  9    An alternative version of the Pinecone client that uses gRPC instead of HTTP for
 10    data operations.
 11
 12    ### Installing the gRPC client
 13
 14    You must install extra dependencies in order to install the GRPC client.
 15
 16    #### Installing with pip
 17
 18    ```bash
 19    # Install the latest version
 20    pip3 install pinecone[grpc]
 21
 22    # Install a specific version
 23    pip3 install "pinecone[grpc]"==3.0.0
 24    ```
 25
 26    #### Installing with poetry
 27
 28    ```bash
 29    # Install the latest version
 30    poetry add pinecone --extras grpc
 31
 32    # Install a specific version
 33    poetry add pinecone==3.0.0 --extras grpc
 34    ```
 35
 36    ### Using the gRPC client
 37
 38    ```python
 39    import os
 40    from pinecone.grpc import PineconeGRPC
 41
 42    client = PineconeGRPC(api_key=os.environ.get("PINECONE_API_KEY"))
 43
 44    # From this point on, usage is identical to the HTTP client.
 45    index = client.Index("my-index", host=os.environ("PINECONE_INDEX_HOST"))
 46    index.query(...)
 47    ```
 48
 49    """
 50
 51    def Index(self, name: str = "", host: str = "", **kwargs):
 52        """
 53        Target an index for data operations.
 54
 55        ### Target an index by host url
 56
 57        In production situations, you want to uspert or query your data as quickly
 58        as possible. If you know in advance the host url of your index, you can
 59        eliminate a round trip to the Pinecone control plane by specifying the
 60        host of the index.
 61
 62        ```python
 63        import os
 64        from pinecone.grpc import PineconeGRPC
 65
 66        api_key = os.environ.get("PINECONE_API_KEY")
 67        index_host = os.environ.get("PINECONE_INDEX_HOST")
 68
 69        pc = PineconeGRPC(api_key=api_key)
 70        index = pc.Index(host=index_host)
 71
 72        # Now you're ready to perform data operations
 73        index.query(vector=[...], top_k=10)
 74        ```
 75
 76        To find your host url, you can use the Pinecone control plane to describe
 77        the index. The host url is returned in the response. Or, alternatively, the
 78        host is displayed in the Pinecone web console.
 79
 80        ```python
 81        import os
 82        from pinecone import Pinecone
 83
 84        pc = Pinecone(
 85            api_key=os.environ.get("PINECONE_API_KEY")
 86        )
 87
 88        host = pc.describe_index('index-name').host
 89        ```
 90
 91        ### Target an index by name (not recommended for production)
 92
 93        For more casual usage, such as when you are playing and exploring with Pinecone
 94        in a notebook setting, you can also target an index by name. If you use this
 95        approach, the client may need to perform an extra call to the Pinecone control
 96        plane to get the host url on your behalf to get the index host.
 97
 98        The client will cache the index host for future use whenever it is seen, so you
 99        will only incur the overhead of only one call. But this approach is not
100        recommended for production usage.
101
102        ```python
103        import os
104        from pinecone import ServerlessSpec
105        from pinecone.grpc import PineconeGRPC
106
107        api_key = os.environ.get("PINECONE_API_KEY")
108
109        pc = PineconeGRPC(api_key=api_key)
110        pc.create_index(
111            name='my-index',
112            dimension=1536,
113            metric='cosine',
114            spec=ServerlessSpec(cloud='aws', region='us-west-2')
115        )
116        index = pc.Index('my-index')
117
118        # Now you're ready to perform data operations
119        index.query(vector=[...], top_k=10)
120        ```
121        """
122        if name == "" and host == "":
123            raise ValueError("Either name or host must be specified")
124
125        # Use host if it is provided, otherwise get host from describe_index
126        index_host = host or self.index_host_store.get_host(self.index_api, self.config, name)
127
128        pt = kwargs.pop("pool_threads", None) or self.pool_threads
129
130        config = ConfigBuilder.build(
131            api_key=self.config.api_key,
132            host=index_host,
133            source_tag=self.config.source_tag,
134            proxy_url=self.config.proxy_url,
135            ssl_ca_certs=self.config.ssl_ca_certs,
136        )
137        return GRPCIndex(index_name=name, config=config, pool_threads=pt, **kwargs)

An alternative version of the Pinecone client that uses gRPC instead of HTTP for data operations.

Installing the gRPC client

You must install extra dependencies in order to install the GRPC client.

Installing with pip

# Install the latest version
pip3 install pinecone[grpc]

# Install a specific version
pip3 install "pinecone[grpc]"==3.0.0

Installing with poetry

# Install the latest version
poetry add pinecone --extras grpc

# Install a specific version
poetry add pinecone==3.0.0 --extras grpc

Using the gRPC client

import os
from pinecone.grpc import PineconeGRPC

client = PineconeGRPC(api_key=os.environ.get("PINECONE_API_KEY"))

# From this point on, usage is identical to the HTTP client.
index = client.Index("my-index", host=os.environ("PINECONE_INDEX_HOST"))
index.query(...)
def Index(self, name: str = '', host: str = '', **kwargs):
 51    def Index(self, name: str = "", host: str = "", **kwargs):
 52        """
 53        Target an index for data operations.
 54
 55        ### Target an index by host url
 56
 57        In production situations, you want to uspert or query your data as quickly
 58        as possible. If you know in advance the host url of your index, you can
 59        eliminate a round trip to the Pinecone control plane by specifying the
 60        host of the index.
 61
 62        ```python
 63        import os
 64        from pinecone.grpc import PineconeGRPC
 65
 66        api_key = os.environ.get("PINECONE_API_KEY")
 67        index_host = os.environ.get("PINECONE_INDEX_HOST")
 68
 69        pc = PineconeGRPC(api_key=api_key)
 70        index = pc.Index(host=index_host)
 71
 72        # Now you're ready to perform data operations
 73        index.query(vector=[...], top_k=10)
 74        ```
 75
 76        To find your host url, you can use the Pinecone control plane to describe
 77        the index. The host url is returned in the response. Or, alternatively, the
 78        host is displayed in the Pinecone web console.
 79
 80        ```python
 81        import os
 82        from pinecone import Pinecone
 83
 84        pc = Pinecone(
 85            api_key=os.environ.get("PINECONE_API_KEY")
 86        )
 87
 88        host = pc.describe_index('index-name').host
 89        ```
 90
 91        ### Target an index by name (not recommended for production)
 92
 93        For more casual usage, such as when you are playing and exploring with Pinecone
 94        in a notebook setting, you can also target an index by name. If you use this
 95        approach, the client may need to perform an extra call to the Pinecone control
 96        plane to get the host url on your behalf to get the index host.
 97
 98        The client will cache the index host for future use whenever it is seen, so you
 99        will only incur the overhead of only one call. But this approach is not
100        recommended for production usage.
101
102        ```python
103        import os
104        from pinecone import ServerlessSpec
105        from pinecone.grpc import PineconeGRPC
106
107        api_key = os.environ.get("PINECONE_API_KEY")
108
109        pc = PineconeGRPC(api_key=api_key)
110        pc.create_index(
111            name='my-index',
112            dimension=1536,
113            metric='cosine',
114            spec=ServerlessSpec(cloud='aws', region='us-west-2')
115        )
116        index = pc.Index('my-index')
117
118        # Now you're ready to perform data operations
119        index.query(vector=[...], top_k=10)
120        ```
121        """
122        if name == "" and host == "":
123            raise ValueError("Either name or host must be specified")
124
125        # Use host if it is provided, otherwise get host from describe_index
126        index_host = host or self.index_host_store.get_host(self.index_api, self.config, name)
127
128        pt = kwargs.pop("pool_threads", None) or self.pool_threads
129
130        config = ConfigBuilder.build(
131            api_key=self.config.api_key,
132            host=index_host,
133            source_tag=self.config.source_tag,
134            proxy_url=self.config.proxy_url,
135            ssl_ca_certs=self.config.ssl_ca_certs,
136        )
137        return GRPCIndex(index_name=name, config=config, pool_threads=pt, **kwargs)

Target an index for data operations.

Target an index by host url

In production situations, you want to uspert or query your data as quickly as possible. If you know in advance the host url of your index, you can eliminate a round trip to the Pinecone control plane by specifying the host of the index.

import os
from pinecone.grpc import PineconeGRPC

api_key = os.environ.get("PINECONE_API_KEY")
index_host = os.environ.get("PINECONE_INDEX_HOST")

pc = PineconeGRPC(api_key=api_key)
index = pc.Index(host=index_host)

# Now you're ready to perform data operations
index.query(vector=[...], top_k=10)

To find your host url, you can use the Pinecone control plane to describe the index. The host url is returned in the response. Or, alternatively, the host is displayed in the Pinecone web console.

import os
from pinecone import Pinecone

pc = Pinecone(
    api_key=os.environ.get("PINECONE_API_KEY")
)

host = pc.describe_index('index-name').host

For more casual usage, such as when you are playing and exploring with Pinecone in a notebook setting, you can also target an index by name. If you use this approach, the client may need to perform an extra call to the Pinecone control plane to get the host url on your behalf to get the index host.

The client will cache the index host for future use whenever it is seen, so you will only incur the overhead of only one call. But this approach is not recommended for production usage.

import os
from pinecone import ServerlessSpec
from pinecone.grpc import PineconeGRPC

api_key = os.environ.get("PINECONE_API_KEY")

pc = PineconeGRPC(api_key=api_key)
pc.create_index(
    name='my-index',
    dimension=1536,
    metric='cosine',
    spec=ServerlessSpec(cloud='aws', region='us-west-2')
)
index = pc.Index('my-index')

# Now you're ready to perform data operations
index.query(vector=[...], top_k=10)
GRPCDeleteResponse = <class 'db_data_2025_01_pb2.DeleteResponse'>
class GRPCClientConfig(typing.NamedTuple):
 6class GRPCClientConfig(NamedTuple):
 7    """
 8    GRPC client configuration options.
 9
10    :param secure: Whether to use encrypted protocol (SSL). defaults to True.
11    :type secure: bool, optional
12    :param timeout: defaults to 2 seconds. Fail if gateway doesn't receive response within timeout.
13    :type timeout: int, optional
14    :param conn_timeout: defaults to 1. Timeout to retry connection if gRPC is unavailable. 0 is no retry.
15    :type conn_timeout: int, optional
16    :param reuse_channel: Whether to reuse the same grpc channel for multiple requests
17    :type reuse_channel: bool, optional
18    :param retry_config: RetryConfig indicating how requests should be retried
19    :type retry_config: RetryConfig, optional
20    :param grpc_channel_options: A dict of gRPC channel arguments
21    :type grpc_channel_options: Dict[str, str]
22    :param additional_metadata: Additional metadata to be sent to the server with each request. Note that this
23        metadata refers to [gRPC metadata](https://grpc.io/docs/guides/metadata/) which is a concept similar
24        to HTTP headers. This is unrelated to the metadata can be stored with a vector in the index.
25    :type additional_metadata: Dict[str, str]
26    """
27
28    secure: bool = True
29    timeout: int = 20
30    conn_timeout: int = 1
31    reuse_channel: bool = True
32    retry_config: Optional[RetryConfig] = None
33    grpc_channel_options: Optional[Dict[str, str]] = None
34    additional_metadata: Optional[Dict[str, str]] = None
35
36    @classmethod
37    def _from_dict(cls, kwargs: dict):
38        cls_kwargs = {kk: vv for kk, vv in kwargs.items() if kk in cls._fields}
39        return cls(**cls_kwargs)

GRPC client configuration options.

Parameters
  • secure: Whether to use encrypted protocol (SSL). defaults to True.
  • timeout: defaults to 2 seconds. Fail if gateway doesn't receive response within timeout.
  • conn_timeout: defaults to 1. Timeout to retry connection if gRPC is unavailable. 0 is no retry.
  • reuse_channel: Whether to reuse the same grpc channel for multiple requests
  • retry_config: RetryConfig indicating how requests should be retried
  • grpc_channel_options: A dict of gRPC channel arguments
  • additional_metadata: Additional metadata to be sent to the server with each request. Note that this metadata refers to gRPC metadata which is a concept similar to HTTP headers. This is unrelated to the metadata can be stored with a vector in the index.
GRPCClientConfig( secure: bool = True, timeout: int = 20, conn_timeout: int = 1, reuse_channel: bool = True, retry_config: Optional[pinecone.grpc.retry.RetryConfig] = None, grpc_channel_options: Optional[Dict[str, str]] = None, additional_metadata: Optional[Dict[str, str]] = None)

Create new instance of GRPCClientConfig(secure, timeout, conn_timeout, reuse_channel, retry_config, grpc_channel_options, additional_metadata)

secure: bool

Alias for field number 0

timeout: int

Alias for field number 1

conn_timeout: int

Alias for field number 2

reuse_channel: bool

Alias for field number 3

retry_config: Optional[pinecone.grpc.retry.RetryConfig]

Alias for field number 4

grpc_channel_options: Optional[Dict[str, str]]

Alias for field number 5

additional_metadata: Optional[Dict[str, str]]

Alias for field number 6

Inherited Members
builtins.tuple
index
count
GRPCVector = <class 'db_data_2025_01_pb2.Vector'>
GRPCSparseValues = <class 'db_data_2025_01_pb2.SparseValues'>
@dataclass
class Vector(pinecone.data.dataclasses.utils.DictLike):
10@dataclass
11class Vector(DictLike):
12    id: str
13    values: List[float] = field(default_factory=list)
14    metadata: Optional[VectorMetadataTypedDict] = None
15    sparse_values: Optional[SparseValues] = None
16
17    def __post_init__(self):
18        if self.sparse_values is None and len(self.values) == 0:
19            raise ValueError("The values and sparse_values fields cannot both be empty")
20
21    def to_dict(self) -> VectorTypedDict:
22        vector_dict: VectorTypedDict = {"id": self.id, "values": self.values}
23        if self.metadata is not None:
24            vector_dict["metadata"] = self.metadata
25        if self.sparse_values is not None:
26            vector_dict["sparse_values"] = self.sparse_values.to_dict()
27        return vector_dict
28
29    @staticmethod
30    def from_dict(vector_dict: VectorTypedDict) -> "Vector":
31        passed_sparse_values = vector_dict.get("sparse_values")
32        if passed_sparse_values is not None:
33            parsed_sparse_values = SparseValues.from_dict(passed_sparse_values)
34        else:
35            parsed_sparse_values = None
36
37        return Vector(
38            id=vector_dict["id"],
39            values=vector_dict["values"],
40            metadata=vector_dict.get("metadata"),
41            sparse_values=parsed_sparse_values,
42        )
Vector( id: str, values: List[float] = <factory>, metadata: Optional[Dict[str, Union[str, int, float, List[str], List[int], List[float]]]] = None, sparse_values: Optional[SparseValues] = None)
id: str
values: List[float]
metadata: Optional[Dict[str, Union[str, int, float, List[str], List[int], List[float]]]] = None
sparse_values: Optional[SparseValues] = None
def to_dict(self) -> pinecone.data.types.vector_typed_dict.VectorTypedDict:
21    def to_dict(self) -> VectorTypedDict:
22        vector_dict: VectorTypedDict = {"id": self.id, "values": self.values}
23        if self.metadata is not None:
24            vector_dict["metadata"] = self.metadata
25        if self.sparse_values is not None:
26            vector_dict["sparse_values"] = self.sparse_values.to_dict()
27        return vector_dict
@staticmethod
def from_dict( vector_dict: pinecone.data.types.vector_typed_dict.VectorTypedDict) -> Vector:
29    @staticmethod
30    def from_dict(vector_dict: VectorTypedDict) -> "Vector":
31        passed_sparse_values = vector_dict.get("sparse_values")
32        if passed_sparse_values is not None:
33            parsed_sparse_values = SparseValues.from_dict(passed_sparse_values)
34        else:
35            parsed_sparse_values = None
36
37        return Vector(
38            id=vector_dict["id"],
39            values=vector_dict["values"],
40            metadata=vector_dict.get("metadata"),
41            sparse_values=parsed_sparse_values,
42        )
@dataclass
class SparseValues(pinecone.data.dataclasses.utils.DictLike):
 9@dataclass
10class SparseValues(DictLike):
11    indices: List[int]
12    values: List[float]
13
14    def to_dict(self) -> SparseVectorTypedDict:
15        return {"indices": self.indices, "values": self.values}
16
17    @staticmethod
18    def from_dict(sparse_values_dict: SparseVectorTypedDict) -> "SparseValues":
19        return SparseValues(
20            indices=sparse_values_dict["indices"], values=sparse_values_dict["values"]
21        )
SparseValues(indices: List[int], values: List[float])
indices: List[int]
values: List[float]
14    def to_dict(self) -> SparseVectorTypedDict:
15        return {"indices": self.indices, "values": self.values}
@staticmethod
def from_dict( sparse_values_dict: pinecone.data.types.sparse_vector_typed_dict.SparseVectorTypedDict) -> SparseValues:
17    @staticmethod
18    def from_dict(sparse_values_dict: SparseVectorTypedDict) -> "SparseValues":
19        return SparseValues(
20            indices=sparse_values_dict["indices"], values=sparse_values_dict["values"]
21        )
class PineconeGrpcFuture(concurrent.futures._base.Future):
 8class PineconeGrpcFuture(ConcurrentFuture):
 9    def __init__(
10        self, grpc_future: GrpcFuture, timeout: Optional[int] = None, result_transformer=None
11    ):
12        super().__init__()
13        self._grpc_future = grpc_future
14        self._result_transformer = result_transformer
15        if timeout is not None:
16            self._default_timeout = timeout  # seconds
17        else:
18            self._default_timeout = 5  # seconds
19
20        # Sync initial state, in case the gRPC future is already done
21        self._sync_state(self._grpc_future)
22
23        # Add callback to subscribe to updates from the gRPC future
24        self._grpc_future.add_done_callback(self._sync_state)
25
26    @property
27    def grpc_future(self):
28        return self._grpc_future
29
30    def _sync_state(self, grpc_future):
31        if self.done():
32            return
33
34        if grpc_future.cancelled():
35            self.cancel()
36        elif grpc_future.exception(timeout=self._default_timeout):
37            self.set_exception(grpc_future.exception())
38        elif grpc_future.done():
39            try:
40                result = grpc_future.result(timeout=self._default_timeout)
41                self.set_result(result)
42            except Exception as e:
43                self.set_exception(e)
44        elif grpc_future.running():
45            self.set_running_or_notify_cancel()
46
47    def set_result(self, result):
48        if self._result_transformer:
49            result = self._result_transformer(result)
50        return super().set_result(result)
51
52    def cancel(self):
53        self._grpc_future.cancel()
54        return super().cancel()
55
56    def exception(self, timeout=None):
57        exception = super().exception(timeout=self._timeout(timeout))
58        if isinstance(exception, RpcError):
59            return self._wrap_rpc_exception(exception)
60        return exception
61
62    def traceback(self, timeout=None):
63        # This is not part of the ConcurrentFuture interface, but keeping it for
64        # backward compatibility
65        return self._grpc_future.traceback(timeout=self._timeout(timeout))
66
67    def result(self, timeout=None):
68        try:
69            return super().result(timeout=self._timeout(timeout))
70        except RpcError as e:
71            raise self._wrap_rpc_exception(e) from e
72
73    def _timeout(self, timeout: Optional[int] = None) -> int:
74        if timeout is not None:
75            return timeout
76        else:
77            return self._default_timeout
78
79    def _wrap_rpc_exception(self, e):
80        if e._state and e._state.debug_error_string:
81            return PineconeException(e._state.debug_error_string)
82        else:
83            return PineconeException("Unknown GRPC error")
84
85    def __del__(self):
86        self._grpc_future.cancel()
87        self = None  # release the reference to the grpc future

Represents the result of an asynchronous computation.

PineconeGrpcFuture( grpc_future: grpc.Future, timeout: Optional[int] = None, result_transformer=None)
 9    def __init__(
10        self, grpc_future: GrpcFuture, timeout: Optional[int] = None, result_transformer=None
11    ):
12        super().__init__()
13        self._grpc_future = grpc_future
14        self._result_transformer = result_transformer
15        if timeout is not None:
16            self._default_timeout = timeout  # seconds
17        else:
18            self._default_timeout = 5  # seconds
19
20        # Sync initial state, in case the gRPC future is already done
21        self._sync_state(self._grpc_future)
22
23        # Add callback to subscribe to updates from the gRPC future
24        self._grpc_future.add_done_callback(self._sync_state)

Initializes the future. Should not be called by clients.

grpc_future
26    @property
27    def grpc_future(self):
28        return self._grpc_future
def set_result(self, result):
47    def set_result(self, result):
48        if self._result_transformer:
49            result = self._result_transformer(result)
50        return super().set_result(result)

Sets the return value of work associated with the future.

Should only be used by Executor implementations and unit tests.

def cancel(self):
52    def cancel(self):
53        self._grpc_future.cancel()
54        return super().cancel()

Cancel the future if possible.

Returns True if the future was cancelled, False otherwise. A future cannot be cancelled if it is running or has already completed.

def exception(self, timeout=None):
56    def exception(self, timeout=None):
57        exception = super().exception(timeout=self._timeout(timeout))
58        if isinstance(exception, RpcError):
59            return self._wrap_rpc_exception(exception)
60        return exception

Return the exception raised by the call that the future represents.

Arguments:
  • timeout: The number of seconds to wait for the exception if the future isn't done. If None, then there is no limit on the wait time.
Returns:

The exception raised by the call that the future represents or None if the call completed without raising.

Raises:
  • CancelledError: If the future was cancelled.
  • TimeoutError: If the future didn't finish executing before the given timeout.
def traceback(self, timeout=None):
62    def traceback(self, timeout=None):
63        # This is not part of the ConcurrentFuture interface, but keeping it for
64        # backward compatibility
65        return self._grpc_future.traceback(timeout=self._timeout(timeout))
def result(self, timeout=None):
67    def result(self, timeout=None):
68        try:
69            return super().result(timeout=self._timeout(timeout))
70        except RpcError as e:
71            raise self._wrap_rpc_exception(e) from e

Return the result of the call that the future represents.

Arguments:
  • timeout: The number of seconds to wait for the result if the future isn't done. If None, then there is no limit on the wait time.
Returns:

The result of the call that the future represents.

Raises:
  • CancelledError: If the future was cancelled.
  • TimeoutError: If the future didn't finish executing before the given timeout.
  • Exception: If the call raised then that exception will be raised.
Inherited Members
concurrent.futures._base.Future
cancelled
running
done
add_done_callback
set_running_or_notify_cancel
set_exception