pinecone.data.index

  1from tqdm.autonotebook import tqdm
  2
  3import logging
  4import json
  5from typing import Union, List, Optional, Dict, Any, Literal
  6
  7from pinecone.config import ConfigBuilder
  8
  9from pinecone.core.openapi.shared import API_VERSION
 10from pinecone.core.openapi.data import ApiClient
 11from pinecone.core.openapi.data.models import (
 12    FetchResponse,
 13    QueryRequest,
 14    QueryResponse,
 15    RpcStatus,
 16    ScoredVector,
 17    SingleQueryResults,
 18    DescribeIndexStatsResponse,
 19    UpsertRequest,
 20    UpsertResponse,
 21    Vector,
 22    DeleteRequest,
 23    UpdateRequest,
 24    DescribeIndexStatsRequest,
 25    ListResponse,
 26    SparseValues,
 27)
 28from pinecone.core.openapi.data.api.data_plane_api import DataPlaneApi
 29from ..utils import (
 30    setup_openapi_client,
 31    parse_non_empty_args,
 32    build_plugin_setup_client,
 33    validate_and_convert_errors,
 34)
 35from .features.bulk_import import ImportFeatureMixin
 36from .vector_factory import VectorFactory
 37from .query_results_aggregator import QueryResultsAggregator, QueryNamespacesResults
 38
 39from multiprocessing.pool import ApplyResult
 40from concurrent.futures import as_completed
 41
 42from pinecone_plugin_interface import load_and_install as install_plugins
 43
 44logger = logging.getLogger(__name__)
 45
 46__all__ = [
 47    "Index",
 48    "FetchResponse",
 49    "QueryRequest",
 50    "QueryResponse",
 51    "RpcStatus",
 52    "ScoredVector",
 53    "SingleQueryResults",
 54    "DescribeIndexStatsResponse",
 55    "UpsertRequest",
 56    "UpsertResponse",
 57    "UpdateRequest",
 58    "Vector",
 59    "DeleteRequest",
 60    "UpdateRequest",
 61    "DescribeIndexStatsRequest",
 62    "SparseValues",
 63]
 64
 65_OPENAPI_ENDPOINT_PARAMS = (
 66    "_return_http_data_only",
 67    "_preload_content",
 68    "_request_timeout",
 69    "_check_input_type",
 70    "_check_return_type",
 71    "_host_index",
 72    "async_req",
 73    "async_threadpool_executor",
 74)
 75
 76
 77def parse_query_response(response: QueryResponse):
 78    response._data_store.pop("results", None)
 79    return response
 80
 81
 82class Index(ImportFeatureMixin):
 83    """
 84    A client for interacting with a Pinecone index via REST API.
 85    For improved performance, use the Pinecone GRPC index client.
 86    """
 87
 88    def __init__(
 89        self,
 90        api_key: str,
 91        host: str,
 92        pool_threads: Optional[int] = 1,
 93        additional_headers: Optional[Dict[str, str]] = {},
 94        openapi_config=None,
 95        **kwargs,
 96    ):
 97        super().__init__(
 98            api_key=api_key,
 99            host=host,
100            pool_threads=pool_threads,
101            additional_headers=additional_headers,
102            openapi_config=openapi_config,
103            **kwargs,
104        )
105
106        self.config = ConfigBuilder.build(
107            api_key=api_key, host=host, additional_headers=additional_headers, **kwargs
108        )
109        self._openapi_config = ConfigBuilder.build_openapi_config(self.config, openapi_config)
110        self._pool_threads = pool_threads
111
112        if kwargs.get("connection_pool_maxsize", None):
113            self._openapi_config.connection_pool_maxsize = kwargs.get("connection_pool_maxsize")
114
115        self._vector_api = setup_openapi_client(
116            api_client_klass=ApiClient,
117            api_klass=DataPlaneApi,
118            config=self.config,
119            openapi_config=self._openapi_config,
120            pool_threads=self._pool_threads,
121            api_version=API_VERSION,
122        )
123
124        self._load_plugins()
125
126    def _load_plugins(self):
127        """@private"""
128        try:
129            # I don't expect this to ever throw, but wrapping this in a
130            # try block just in case to make sure a bad plugin doesn't
131            # halt client initialization.
132            openapi_client_builder = build_plugin_setup_client(
133                config=self.config,
134                openapi_config=self._openapi_config,
135                pool_threads=self._pool_threads,
136            )
137            install_plugins(self, openapi_client_builder)
138        except Exception as e:
139            logger.error(f"Error loading plugins in Index: {e}")
140
141    def __enter__(self):
142        return self
143
144    def __exit__(self, exc_type, exc_value, traceback):
145        self._vector_api.api_client.close()
146
147    @validate_and_convert_errors
148    def upsert(
149        self,
150        vectors: Union[List[Vector], List[tuple], List[dict]],
151        namespace: Optional[str] = None,
152        batch_size: Optional[int] = None,
153        show_progress: bool = True,
154        **kwargs,
155    ) -> UpsertResponse:
156        """
157        The upsert operation writes vectors into a namespace.
158        If a new value is upserted for an existing vector id, it will overwrite the previous value.
159
160        To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel
161
162        A vector can be represented by a 1) Vector object, a 2) tuple or 3) a dictionary
163
164        If a tuple is used, it must be of the form `(id, values, metadata)` or `(id, values)`.
165        where id is a string, vector is a list of floats, metadata is a dict,
166        and sparse_values is a dict of the form `{'indices': List[int], 'values': List[float]}`.
167
168        Examples:
169            >>> ('id1', [1.0, 2.0, 3.0], {'key': 'value'}, {'indices': [1, 2], 'values': [0.2, 0.4]})
170            >>> ('id1', [1.0, 2.0, 3.0], None, {'indices': [1, 2], 'values': [0.2, 0.4]})
171            >>> ('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])
172
173        If a Vector object is used, a Vector object must be of the form
174        `Vector(id, values, metadata, sparse_values)`, where metadata and sparse_values are optional
175        arguments.
176
177        Examples:
178            >>> Vector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'})
179            >>> Vector(id='id2', values=[1.0, 2.0, 3.0])
180            >>> Vector(id='id3', values=[1.0, 2.0, 3.0], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]))
181
182        **Note:** the dimension of each vector must match the dimension of the index.
183
184        If a dictionary is used, it must be in the form `{'id': str, 'values': List[float], 'sparse_values': {'indices': List[int], 'values': List[float]}, 'metadata': dict}`
185
186        Examples:
187            >>> index.upsert([('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])])
188            >>>
189            >>> index.upsert([{'id': 'id1', 'values': [1.0, 2.0, 3.0], 'metadata': {'key': 'value'}},
190            >>>               {'id': 'id2', 'values': [1.0, 2.0, 3.0], 'sparse_values': {'indices': [1, 8], 'values': [0.2, 0.4]}])
191            >>> index.upsert([Vector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
192            >>>               Vector(id='id2', values=[1.0, 2.0, 3.0], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]))])
193
194        API reference: https://docs.pinecone.io/reference/upsert
195
196        Args:
197            vectors (Union[List[Vector], List[Tuple]]): A list of vectors to upsert.
198            namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
199            batch_size (int): The number of vectors to upsert in each batch.
200                               If not specified, all vectors will be upserted in a single batch. [optional]
201            show_progress (bool): Whether to show a progress bar using tqdm.
202                                  Applied only if batch_size is provided. Default is True.
203        Keyword Args:
204            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.UpsertRequest for more details.
205
206        Returns: UpsertResponse, includes the number of vectors upserted.
207        """
208        _check_type = kwargs.pop("_check_type", True)
209
210        if kwargs.get("async_req", False) and batch_size is not None:
211            raise ValueError(
212                "async_req is not supported when batch_size is provided."
213                "To upsert in parallel, please follow: "
214                "https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel"
215            )
216
217        if batch_size is None:
218            return self._upsert_batch(vectors, namespace, _check_type, **kwargs)
219
220        if not isinstance(batch_size, int) or batch_size <= 0:
221            raise ValueError("batch_size must be a positive integer")
222
223        pbar = tqdm(total=len(vectors), disable=not show_progress, desc="Upserted vectors")
224        total_upserted = 0
225        for i in range(0, len(vectors), batch_size):
226            batch_result = self._upsert_batch(
227                vectors[i : i + batch_size], namespace, _check_type, **kwargs
228            )
229            pbar.update(batch_result.upserted_count)
230            # we can't use here pbar.n for the case show_progress=False
231            total_upserted += batch_result.upserted_count
232
233        return UpsertResponse(upserted_count=total_upserted)
234
235    def _upsert_batch(
236        self,
237        vectors: Union[List[Vector], List[tuple], List[dict]],
238        namespace: Optional[str],
239        _check_type: bool,
240        **kwargs,
241    ) -> UpsertResponse:
242        args_dict = parse_non_empty_args([("namespace", namespace)])
243
244        def vec_builder(v):
245            return VectorFactory.build(v, check_type=_check_type)
246
247        return self._vector_api.upsert(
248            UpsertRequest(
249                vectors=list(map(vec_builder, vectors)),
250                **args_dict,
251                _check_type=_check_type,
252                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
253            ),
254            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
255        )
256
257    @staticmethod
258    def _iter_dataframe(df, batch_size):
259        for i in range(0, len(df), batch_size):
260            batch = df.iloc[i : i + batch_size].to_dict(orient="records")
261            yield batch
262
263    def upsert_from_dataframe(
264        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
265    ) -> UpsertResponse:
266        """Upserts a dataframe into the index.
267
268        Args:
269            df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
270            namespace: The namespace to upsert into.
271            batch_size: The number of rows to upsert in a single batch.
272            show_progress: Whether to show a progress bar.
273        """
274        try:
275            import pandas as pd
276        except ImportError:
277            raise RuntimeError(
278                "The `pandas` package is not installed. Please install pandas to use `upsert_from_dataframe()`"
279            )
280
281        if not isinstance(df, pd.DataFrame):
282            raise ValueError(f"Only pandas dataframes are supported. Found: {type(df)}")
283
284        pbar = tqdm(total=len(df), disable=not show_progress, desc="sending upsert requests")
285        results = []
286        for chunk in self._iter_dataframe(df, batch_size=batch_size):
287            res = self.upsert(vectors=chunk, namespace=namespace)
288            pbar.update(len(chunk))
289            results.append(res)
290
291        upserted_count = 0
292        for res in results:
293            upserted_count += res.upserted_count
294
295        return UpsertResponse(upserted_count=upserted_count)
296
297    @validate_and_convert_errors
298    def delete(
299        self,
300        ids: Optional[List[str]] = None,
301        delete_all: Optional[bool] = None,
302        namespace: Optional[str] = None,
303        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
304        **kwargs,
305    ) -> Dict[str, Any]:
306        """
307        The Delete operation deletes vectors from the index, from a single namespace.
308        No error raised if the vector id does not exist.
309        Note: for any delete call, if namespace is not specified, the default namespace is used.
310
311        Delete can occur in the following mutual exclusive ways:
312        1. Delete by ids from a single namespace
313        2. Delete all vectors from a single namespace by setting delete_all to True
314        3. Delete all vectors from a single namespace by specifying a metadata filter
315            (note that for this option delete all must be set to False)
316
317        API reference: https://docs.pinecone.io/reference/delete_post
318
319        Examples:
320            >>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
321            >>> index.delete(delete_all=True, namespace='my_namespace')
322            >>> index.delete(filter={'key': 'value'}, namespace='my_namespace')
323
324        Args:
325            ids (List[str]): Vector ids to delete [optional]
326            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional]
327                                Default is False.
328            namespace (str): The namespace to delete vectors from [optional]
329                            If not specified, the default namespace is used.
330            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
331                    If specified, the metadata filter here will be used to select the vectors to delete.
332                    This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True.
333                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
334
335        Keyword Args:
336          Supports OpenAPI client keyword arguments. See pinecone.core.client.models.DeleteRequest for more details.
337
338
339          Returns: An empty dictionary if the delete operation was successful.
340        """
341        _check_type = kwargs.pop("_check_type", False)
342        args_dict = parse_non_empty_args(
343            [("ids", ids), ("delete_all", delete_all), ("namespace", namespace), ("filter", filter)]
344        )
345
346        return self._vector_api.delete(
347            DeleteRequest(
348                **args_dict,
349                **{
350                    k: v
351                    for k, v in kwargs.items()
352                    if k not in _OPENAPI_ENDPOINT_PARAMS and v is not None
353                },
354                _check_type=_check_type,
355            ),
356            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
357        )
358
359    @validate_and_convert_errors
360    def fetch(self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> FetchResponse:
361        """
362        The fetch operation looks up and returns vectors, by ID, from a single namespace.
363        The returned vectors include the vector data and/or metadata.
364
365        API reference: https://docs.pinecone.io/reference/fetch
366
367        Examples:
368            >>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
369            >>> index.fetch(ids=['id1', 'id2'])
370
371        Args:
372            ids (List[str]): The vector IDs to fetch.
373            namespace (str): The namespace to fetch vectors from.
374                             If not specified, the default namespace is used. [optional]
375        Keyword Args:
376            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.FetchResponse for more details.
377
378
379        Returns: FetchResponse object which contains the list of Vector objects, and namespace name.
380        """
381        args_dict = parse_non_empty_args([("namespace", namespace)])
382        return self._vector_api.fetch(ids=ids, **args_dict, **kwargs)
383
384    @validate_and_convert_errors
385    def query(
386        self,
387        *args,
388        top_k: int,
389        vector: Optional[List[float]] = None,
390        id: Optional[str] = None,
391        namespace: Optional[str] = None,
392        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
393        include_values: Optional[bool] = None,
394        include_metadata: Optional[bool] = None,
395        sparse_vector: Optional[
396            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
397        ] = None,
398        **kwargs,
399    ) -> Union[QueryResponse, ApplyResult]:
400        """
401        The Query operation searches a namespace, using a query vector.
402        It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
403
404        API reference: https://docs.pinecone.io/reference/query
405
406        Examples:
407            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
408            >>> index.query(id='id1', top_k=10, namespace='my_namespace')
409            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
410            >>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
411            >>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
412            >>>             top_k=10, namespace='my_namespace')
413            >>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
414            >>>             top_k=10, namespace='my_namespace')
415
416        Args:
417            vector (List[float]): The query vector. This should be the same length as the dimension of the index
418                                  being queried. Each `query()` request can contain only one of the parameters
419                                  `id` or `vector`.. [optional]
420            id (str): The unique ID of the vector to be used as a query vector.
421                      Each `query()` request can contain only one of the parameters
422                      `vector` or  `id`. [optional]
423            top_k (int): The number of results to return for each query. Must be an integer greater than 1.
424            namespace (str): The namespace to fetch vectors from.
425                             If not specified, the default namespace is used. [optional]
426            filter (Dict[str, Union[str, float, int, bool, List, dict]):
427                    The filter to apply. You can use vector metadata to limit your search.
428                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
429            include_values (bool): Indicates whether vector values are included in the response.
430                                   If omitted the server will use the default value of False [optional]
431            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.
432                                     If omitted the server will use the default value of False  [optional]
433            sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector.
434                            Expected to be either a SparseValues object or a dict of the form:
435                             {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
436
437        Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects,
438                 and namespace name.
439        """
440
441        response = self._query(
442            *args,
443            top_k=top_k,
444            vector=vector,
445            id=id,
446            namespace=namespace,
447            filter=filter,
448            include_values=include_values,
449            include_metadata=include_metadata,
450            sparse_vector=sparse_vector,
451            **kwargs,
452        )
453
454        if kwargs.get("async_req", False) or kwargs.get("async_threadpool_executor", False):
455            return response
456        else:
457            return parse_query_response(response)
458
459    def _query(
460        self,
461        *args,
462        top_k: int,
463        vector: Optional[List[float]] = None,
464        id: Optional[str] = None,
465        namespace: Optional[str] = None,
466        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
467        include_values: Optional[bool] = None,
468        include_metadata: Optional[bool] = None,
469        sparse_vector: Optional[
470            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
471        ] = None,
472        **kwargs,
473    ) -> QueryResponse:
474        if len(args) > 0:
475            raise ValueError(
476                "The argument order for `query()` has changed; please use keyword arguments instead of positional arguments. Example: index.query(vector=[0.1, 0.2, 0.3], top_k=10, namespace='my_namespace')"
477            )
478
479        if vector is not None and id is not None:
480            raise ValueError("Cannot specify both `id` and `vector`")
481
482        _check_type = kwargs.pop("_check_type", False)
483
484        sparse_vector = self._parse_sparse_values_arg(sparse_vector)
485        args_dict = parse_non_empty_args(
486            [
487                ("vector", vector),
488                ("id", id),
489                ("queries", None),
490                ("top_k", top_k),
491                ("namespace", namespace),
492                ("filter", filter),
493                ("include_values", include_values),
494                ("include_metadata", include_metadata),
495                ("sparse_vector", sparse_vector),
496            ]
497        )
498
499        response = self._vector_api.query(
500            QueryRequest(
501                **args_dict,
502                _check_type=_check_type,
503                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
504            ),
505            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
506        )
507        return response
508
509    @validate_and_convert_errors
510    def query_namespaces(
511        self,
512        vector: List[float],
513        namespaces: List[str],
514        metric: Literal["cosine", "euclidean", "dotproduct"],
515        top_k: Optional[int] = None,
516        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
517        include_values: Optional[bool] = None,
518        include_metadata: Optional[bool] = None,
519        sparse_vector: Optional[
520            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
521        ] = None,
522        **kwargs,
523    ) -> QueryNamespacesResults:
524        """The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.
525
526        Since several asynchronous calls are made on your behalf when calling this method, you will need to tune the pool_threads and connection_pool_maxsize parameter of the Index constructor to suite your workload.
527
528        Examples:
529
530        ```python
531        from pinecone import Pinecone
532
533        pc = Pinecone(api_key="your-api-key")
534        index = pc.Index(
535            host="index-name",
536            pool_threads=32,
537            connection_pool_maxsize=32
538        )
539
540        query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
541        combined_results = index.query_namespaces(
542            vector=query_vec,
543            namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
544            metric="cosine",
545            top_k=10,
546            filter={'genre': {"$eq": "drama"}},
547            include_values=True,
548            include_metadata=True
549        )
550        for vec in combined_results.matches:
551            print(vec.id, vec.score)
552        print(combined_results.usage)
553        ```
554
555        Args:
556            vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
557            namespaces (List[str]): The list of namespaces to query.
558            top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
559            metric (str): Must be one of 'cosine', 'euclidean', 'dotproduct'. This is needed in order to merge results across namespaces, since the interpretation of score depends on the index metric type.
560            filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
561            include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
562            include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
563            sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
564
565        Returns:
566            QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.
567        """
568        if namespaces is None or len(namespaces) == 0:
569            raise ValueError("At least one namespace must be specified")
570        if len(vector) == 0:
571            raise ValueError("Query vector must not be empty")
572
573        overall_topk = top_k if top_k is not None else 10
574        aggregator = QueryResultsAggregator(top_k=overall_topk, metric=metric)
575
576        target_namespaces = set(namespaces)  # dedup namespaces
577        async_futures = [
578            self.query(
579                vector=vector,
580                namespace=ns,
581                top_k=overall_topk,
582                filter=filter,
583                include_values=include_values,
584                include_metadata=include_metadata,
585                sparse_vector=sparse_vector,
586                async_threadpool_executor=True,
587                _preload_content=False,
588                **kwargs,
589            )
590            for ns in target_namespaces
591        ]
592
593        for result in as_completed(async_futures):
594            raw_result = result.result()
595            response = json.loads(raw_result.data.decode("utf-8"))
596            aggregator.add_results(response)
597
598        final_results = aggregator.get_results()
599        return final_results
600
601    @validate_and_convert_errors
602    def update(
603        self,
604        id: str,
605        values: Optional[List[float]] = None,
606        set_metadata: Optional[
607            Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]
608        ] = None,
609        namespace: Optional[str] = None,
610        sparse_values: Optional[
611            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
612        ] = None,
613        **kwargs,
614    ) -> Dict[str, Any]:
615        """
616        The Update operation updates vector in a namespace.
617        If a value is included, it will overwrite the previous value.
618        If a set_metadata is included,
619        the values of the fields specified in it will be added or overwrite the previous value.
620
621        API reference: https://docs.pinecone.io/reference/update
622
623        Examples:
624            >>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
625            >>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace')
626            >>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
627            >>>              namespace='my_namespace')
628            >>> index.update(id='id1', values=[1, 2, 3], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]),
629            >>>              namespace='my_namespace')
630
631        Args:
632            id (str): Vector's unique id.
633            values (List[float]): vector values to set. [optional]
634            set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]):
635                metadata to set for vector. [optional]
636            namespace (str): Namespace name where to update the vector.. [optional]
637            sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector.
638                           Expected to be either a SparseValues object or a dict of the form:
639                           {'indices': List[int], 'values': List[float]} where the lists each have the same length.
640
641        Keyword Args:
642            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.UpdateRequest for more details.
643
644        Returns: An empty dictionary if the update was successful.
645        """
646        _check_type = kwargs.pop("_check_type", False)
647        sparse_values = self._parse_sparse_values_arg(sparse_values)
648        args_dict = parse_non_empty_args(
649            [
650                ("values", values),
651                ("set_metadata", set_metadata),
652                ("namespace", namespace),
653                ("sparse_values", sparse_values),
654            ]
655        )
656        return self._vector_api.update(
657            UpdateRequest(
658                id=id,
659                **args_dict,
660                _check_type=_check_type,
661                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
662            ),
663            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
664        )
665
666    @validate_and_convert_errors
667    def describe_index_stats(
668        self, filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None, **kwargs
669    ) -> DescribeIndexStatsResponse:
670        """
671        The DescribeIndexStats operation returns statistics about the index's contents.
672        For example: The vector count per namespace and the number of dimensions.
673
674        API reference: https://docs.pinecone.io/reference/describe_index_stats_post
675
676        Examples:
677            >>> index.describe_index_stats()
678            >>> index.describe_index_stats(filter={'key': 'value'})
679
680        Args:
681            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
682            If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
683            See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
684
685        Returns: DescribeIndexStatsResponse object which contains stats about the index.
686        """
687        _check_type = kwargs.pop("_check_type", False)
688        args_dict = parse_non_empty_args([("filter", filter)])
689
690        return self._vector_api.describe_index_stats(
691            DescribeIndexStatsRequest(
692                **args_dict,
693                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
694                _check_type=_check_type,
695            ),
696            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
697        )
698
699    @validate_and_convert_errors
700    def list_paginated(
701        self,
702        prefix: Optional[str] = None,
703        limit: Optional[int] = None,
704        pagination_token: Optional[str] = None,
705        namespace: Optional[str] = None,
706        **kwargs,
707    ) -> ListResponse:
708        """
709        The list_paginated operation finds vectors based on an id prefix within a single namespace.
710        It returns matching ids in a paginated form, with a pagination token to fetch the next page of results.
711        This id list can then be passed to fetch or delete operations, depending on your use case.
712
713        Consider using the `list` method to avoid having to handle pagination tokens manually.
714
715        Examples:
716            >>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
717            >>> [v.id for v in results.vectors]
718            ['99', '990', '991', '992', '993']
719            >>> results.pagination.next
720            eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
721            >>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
722
723        Args:
724            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
725                                    be used with the effect of listing all ids in a namespace [optional]
726            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
727            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
728                in the response if additional results are available. [optional]
729            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
730
731        Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.
732        """
733        args_dict = parse_non_empty_args(
734            [
735                ("prefix", prefix),
736                ("limit", limit),
737                ("namespace", namespace),
738                ("pagination_token", pagination_token),
739            ]
740        )
741        return self._vector_api.list(**args_dict, **kwargs)
742
743    @validate_and_convert_errors
744    def list(self, **kwargs):
745        """
746        The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields
747        a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your
748        behalf.
749
750        Examples:
751            >>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
752            >>>     print(ids)
753            ['99', '990', '991', '992', '993']
754            ['994', '995', '996', '997', '998']
755            ['999']
756
757        Args:
758            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
759                                    be used with the effect of listing all ids in a namespace [optional]
760            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
761            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
762                in the response if additional results are available. [optional]
763            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
764        """
765        done = False
766        while not done:
767            results = self.list_paginated(**kwargs)
768            if len(results.vectors) > 0:
769                yield [v.id for v in results.vectors]
770
771            if results.pagination:
772                kwargs.update({"pagination_token": results.pagination.next})
773            else:
774                done = True
775
776    @staticmethod
777    def _parse_sparse_values_arg(
778        sparse_values: Optional[Union[SparseValues, Dict[str, Union[List[float], List[int]]]]],
779    ) -> Optional[SparseValues]:
780        if sparse_values is None:
781            return None
782
783        if isinstance(sparse_values, SparseValues):
784            return sparse_values
785
786        if (
787            not isinstance(sparse_values, dict)
788            or "indices" not in sparse_values
789            or "values" not in sparse_values
790        ):
791            raise ValueError(
792                "Invalid sparse values argument. Expected a dict of: {'indices': List[int], 'values': List[float]}."
793                f"Received: {sparse_values}"
794            )
795
796        return SparseValues(indices=sparse_values["indices"], values=sparse_values["values"])
 83class Index(ImportFeatureMixin):
 84    """
 85    A client for interacting with a Pinecone index via REST API.
 86    For improved performance, use the Pinecone GRPC index client.
 87    """
 88
 89    def __init__(
 90        self,
 91        api_key: str,
 92        host: str,
 93        pool_threads: Optional[int] = 1,
 94        additional_headers: Optional[Dict[str, str]] = {},
 95        openapi_config=None,
 96        **kwargs,
 97    ):
 98        super().__init__(
 99            api_key=api_key,
100            host=host,
101            pool_threads=pool_threads,
102            additional_headers=additional_headers,
103            openapi_config=openapi_config,
104            **kwargs,
105        )
106
107        self.config = ConfigBuilder.build(
108            api_key=api_key, host=host, additional_headers=additional_headers, **kwargs
109        )
110        self._openapi_config = ConfigBuilder.build_openapi_config(self.config, openapi_config)
111        self._pool_threads = pool_threads
112
113        if kwargs.get("connection_pool_maxsize", None):
114            self._openapi_config.connection_pool_maxsize = kwargs.get("connection_pool_maxsize")
115
116        self._vector_api = setup_openapi_client(
117            api_client_klass=ApiClient,
118            api_klass=DataPlaneApi,
119            config=self.config,
120            openapi_config=self._openapi_config,
121            pool_threads=self._pool_threads,
122            api_version=API_VERSION,
123        )
124
125        self._load_plugins()
126
127    def _load_plugins(self):
128        """@private"""
129        try:
130            # I don't expect this to ever throw, but wrapping this in a
131            # try block just in case to make sure a bad plugin doesn't
132            # halt client initialization.
133            openapi_client_builder = build_plugin_setup_client(
134                config=self.config,
135                openapi_config=self._openapi_config,
136                pool_threads=self._pool_threads,
137            )
138            install_plugins(self, openapi_client_builder)
139        except Exception as e:
140            logger.error(f"Error loading plugins in Index: {e}")
141
142    def __enter__(self):
143        return self
144
145    def __exit__(self, exc_type, exc_value, traceback):
146        self._vector_api.api_client.close()
147
148    @validate_and_convert_errors
149    def upsert(
150        self,
151        vectors: Union[List[Vector], List[tuple], List[dict]],
152        namespace: Optional[str] = None,
153        batch_size: Optional[int] = None,
154        show_progress: bool = True,
155        **kwargs,
156    ) -> UpsertResponse:
157        """
158        The upsert operation writes vectors into a namespace.
159        If a new value is upserted for an existing vector id, it will overwrite the previous value.
160
161        To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel
162
163        A vector can be represented by a 1) Vector object, a 2) tuple or 3) a dictionary
164
165        If a tuple is used, it must be of the form `(id, values, metadata)` or `(id, values)`.
166        where id is a string, vector is a list of floats, metadata is a dict,
167        and sparse_values is a dict of the form `{'indices': List[int], 'values': List[float]}`.
168
169        Examples:
170            >>> ('id1', [1.0, 2.0, 3.0], {'key': 'value'}, {'indices': [1, 2], 'values': [0.2, 0.4]})
171            >>> ('id1', [1.0, 2.0, 3.0], None, {'indices': [1, 2], 'values': [0.2, 0.4]})
172            >>> ('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])
173
174        If a Vector object is used, a Vector object must be of the form
175        `Vector(id, values, metadata, sparse_values)`, where metadata and sparse_values are optional
176        arguments.
177
178        Examples:
179            >>> Vector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'})
180            >>> Vector(id='id2', values=[1.0, 2.0, 3.0])
181            >>> Vector(id='id3', values=[1.0, 2.0, 3.0], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]))
182
183        **Note:** the dimension of each vector must match the dimension of the index.
184
185        If a dictionary is used, it must be in the form `{'id': str, 'values': List[float], 'sparse_values': {'indices': List[int], 'values': List[float]}, 'metadata': dict}`
186
187        Examples:
188            >>> index.upsert([('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])])
189            >>>
190            >>> index.upsert([{'id': 'id1', 'values': [1.0, 2.0, 3.0], 'metadata': {'key': 'value'}},
191            >>>               {'id': 'id2', 'values': [1.0, 2.0, 3.0], 'sparse_values': {'indices': [1, 8], 'values': [0.2, 0.4]}])
192            >>> index.upsert([Vector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
193            >>>               Vector(id='id2', values=[1.0, 2.0, 3.0], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]))])
194
195        API reference: https://docs.pinecone.io/reference/upsert
196
197        Args:
198            vectors (Union[List[Vector], List[Tuple]]): A list of vectors to upsert.
199            namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
200            batch_size (int): The number of vectors to upsert in each batch.
201                               If not specified, all vectors will be upserted in a single batch. [optional]
202            show_progress (bool): Whether to show a progress bar using tqdm.
203                                  Applied only if batch_size is provided. Default is True.
204        Keyword Args:
205            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.UpsertRequest for more details.
206
207        Returns: UpsertResponse, includes the number of vectors upserted.
208        """
209        _check_type = kwargs.pop("_check_type", True)
210
211        if kwargs.get("async_req", False) and batch_size is not None:
212            raise ValueError(
213                "async_req is not supported when batch_size is provided."
214                "To upsert in parallel, please follow: "
215                "https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel"
216            )
217
218        if batch_size is None:
219            return self._upsert_batch(vectors, namespace, _check_type, **kwargs)
220
221        if not isinstance(batch_size, int) or batch_size <= 0:
222            raise ValueError("batch_size must be a positive integer")
223
224        pbar = tqdm(total=len(vectors), disable=not show_progress, desc="Upserted vectors")
225        total_upserted = 0
226        for i in range(0, len(vectors), batch_size):
227            batch_result = self._upsert_batch(
228                vectors[i : i + batch_size], namespace, _check_type, **kwargs
229            )
230            pbar.update(batch_result.upserted_count)
231            # we can't use here pbar.n for the case show_progress=False
232            total_upserted += batch_result.upserted_count
233
234        return UpsertResponse(upserted_count=total_upserted)
235
236    def _upsert_batch(
237        self,
238        vectors: Union[List[Vector], List[tuple], List[dict]],
239        namespace: Optional[str],
240        _check_type: bool,
241        **kwargs,
242    ) -> UpsertResponse:
243        args_dict = parse_non_empty_args([("namespace", namespace)])
244
245        def vec_builder(v):
246            return VectorFactory.build(v, check_type=_check_type)
247
248        return self._vector_api.upsert(
249            UpsertRequest(
250                vectors=list(map(vec_builder, vectors)),
251                **args_dict,
252                _check_type=_check_type,
253                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
254            ),
255            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
256        )
257
258    @staticmethod
259    def _iter_dataframe(df, batch_size):
260        for i in range(0, len(df), batch_size):
261            batch = df.iloc[i : i + batch_size].to_dict(orient="records")
262            yield batch
263
264    def upsert_from_dataframe(
265        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
266    ) -> UpsertResponse:
267        """Upserts a dataframe into the index.
268
269        Args:
270            df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
271            namespace: The namespace to upsert into.
272            batch_size: The number of rows to upsert in a single batch.
273            show_progress: Whether to show a progress bar.
274        """
275        try:
276            import pandas as pd
277        except ImportError:
278            raise RuntimeError(
279                "The `pandas` package is not installed. Please install pandas to use `upsert_from_dataframe()`"
280            )
281
282        if not isinstance(df, pd.DataFrame):
283            raise ValueError(f"Only pandas dataframes are supported. Found: {type(df)}")
284
285        pbar = tqdm(total=len(df), disable=not show_progress, desc="sending upsert requests")
286        results = []
287        for chunk in self._iter_dataframe(df, batch_size=batch_size):
288            res = self.upsert(vectors=chunk, namespace=namespace)
289            pbar.update(len(chunk))
290            results.append(res)
291
292        upserted_count = 0
293        for res in results:
294            upserted_count += res.upserted_count
295
296        return UpsertResponse(upserted_count=upserted_count)
297
298    @validate_and_convert_errors
299    def delete(
300        self,
301        ids: Optional[List[str]] = None,
302        delete_all: Optional[bool] = None,
303        namespace: Optional[str] = None,
304        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
305        **kwargs,
306    ) -> Dict[str, Any]:
307        """
308        The Delete operation deletes vectors from the index, from a single namespace.
309        No error raised if the vector id does not exist.
310        Note: for any delete call, if namespace is not specified, the default namespace is used.
311
312        Delete can occur in the following mutual exclusive ways:
313        1. Delete by ids from a single namespace
314        2. Delete all vectors from a single namespace by setting delete_all to True
315        3. Delete all vectors from a single namespace by specifying a metadata filter
316            (note that for this option delete all must be set to False)
317
318        API reference: https://docs.pinecone.io/reference/delete_post
319
320        Examples:
321            >>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
322            >>> index.delete(delete_all=True, namespace='my_namespace')
323            >>> index.delete(filter={'key': 'value'}, namespace='my_namespace')
324
325        Args:
326            ids (List[str]): Vector ids to delete [optional]
327            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional]
328                                Default is False.
329            namespace (str): The namespace to delete vectors from [optional]
330                            If not specified, the default namespace is used.
331            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
332                    If specified, the metadata filter here will be used to select the vectors to delete.
333                    This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True.
334                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
335
336        Keyword Args:
337          Supports OpenAPI client keyword arguments. See pinecone.core.client.models.DeleteRequest for more details.
338
339
340          Returns: An empty dictionary if the delete operation was successful.
341        """
342        _check_type = kwargs.pop("_check_type", False)
343        args_dict = parse_non_empty_args(
344            [("ids", ids), ("delete_all", delete_all), ("namespace", namespace), ("filter", filter)]
345        )
346
347        return self._vector_api.delete(
348            DeleteRequest(
349                **args_dict,
350                **{
351                    k: v
352                    for k, v in kwargs.items()
353                    if k not in _OPENAPI_ENDPOINT_PARAMS and v is not None
354                },
355                _check_type=_check_type,
356            ),
357            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
358        )
359
360    @validate_and_convert_errors
361    def fetch(self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> FetchResponse:
362        """
363        The fetch operation looks up and returns vectors, by ID, from a single namespace.
364        The returned vectors include the vector data and/or metadata.
365
366        API reference: https://docs.pinecone.io/reference/fetch
367
368        Examples:
369            >>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
370            >>> index.fetch(ids=['id1', 'id2'])
371
372        Args:
373            ids (List[str]): The vector IDs to fetch.
374            namespace (str): The namespace to fetch vectors from.
375                             If not specified, the default namespace is used. [optional]
376        Keyword Args:
377            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.FetchResponse for more details.
378
379
380        Returns: FetchResponse object which contains the list of Vector objects, and namespace name.
381        """
382        args_dict = parse_non_empty_args([("namespace", namespace)])
383        return self._vector_api.fetch(ids=ids, **args_dict, **kwargs)
384
385    @validate_and_convert_errors
386    def query(
387        self,
388        *args,
389        top_k: int,
390        vector: Optional[List[float]] = None,
391        id: Optional[str] = None,
392        namespace: Optional[str] = None,
393        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
394        include_values: Optional[bool] = None,
395        include_metadata: Optional[bool] = None,
396        sparse_vector: Optional[
397            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
398        ] = None,
399        **kwargs,
400    ) -> Union[QueryResponse, ApplyResult]:
401        """
402        The Query operation searches a namespace, using a query vector.
403        It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
404
405        API reference: https://docs.pinecone.io/reference/query
406
407        Examples:
408            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
409            >>> index.query(id='id1', top_k=10, namespace='my_namespace')
410            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
411            >>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
412            >>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
413            >>>             top_k=10, namespace='my_namespace')
414            >>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
415            >>>             top_k=10, namespace='my_namespace')
416
417        Args:
418            vector (List[float]): The query vector. This should be the same length as the dimension of the index
419                                  being queried. Each `query()` request can contain only one of the parameters
420                                  `id` or `vector`.. [optional]
421            id (str): The unique ID of the vector to be used as a query vector.
422                      Each `query()` request can contain only one of the parameters
423                      `vector` or  `id`. [optional]
424            top_k (int): The number of results to return for each query. Must be an integer greater than 1.
425            namespace (str): The namespace to fetch vectors from.
426                             If not specified, the default namespace is used. [optional]
427            filter (Dict[str, Union[str, float, int, bool, List, dict]):
428                    The filter to apply. You can use vector metadata to limit your search.
429                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
430            include_values (bool): Indicates whether vector values are included in the response.
431                                   If omitted the server will use the default value of False [optional]
432            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.
433                                     If omitted the server will use the default value of False  [optional]
434            sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector.
435                            Expected to be either a SparseValues object or a dict of the form:
436                             {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
437
438        Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects,
439                 and namespace name.
440        """
441
442        response = self._query(
443            *args,
444            top_k=top_k,
445            vector=vector,
446            id=id,
447            namespace=namespace,
448            filter=filter,
449            include_values=include_values,
450            include_metadata=include_metadata,
451            sparse_vector=sparse_vector,
452            **kwargs,
453        )
454
455        if kwargs.get("async_req", False) or kwargs.get("async_threadpool_executor", False):
456            return response
457        else:
458            return parse_query_response(response)
459
460    def _query(
461        self,
462        *args,
463        top_k: int,
464        vector: Optional[List[float]] = None,
465        id: Optional[str] = None,
466        namespace: Optional[str] = None,
467        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
468        include_values: Optional[bool] = None,
469        include_metadata: Optional[bool] = None,
470        sparse_vector: Optional[
471            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
472        ] = None,
473        **kwargs,
474    ) -> QueryResponse:
475        if len(args) > 0:
476            raise ValueError(
477                "The argument order for `query()` has changed; please use keyword arguments instead of positional arguments. Example: index.query(vector=[0.1, 0.2, 0.3], top_k=10, namespace='my_namespace')"
478            )
479
480        if vector is not None and id is not None:
481            raise ValueError("Cannot specify both `id` and `vector`")
482
483        _check_type = kwargs.pop("_check_type", False)
484
485        sparse_vector = self._parse_sparse_values_arg(sparse_vector)
486        args_dict = parse_non_empty_args(
487            [
488                ("vector", vector),
489                ("id", id),
490                ("queries", None),
491                ("top_k", top_k),
492                ("namespace", namespace),
493                ("filter", filter),
494                ("include_values", include_values),
495                ("include_metadata", include_metadata),
496                ("sparse_vector", sparse_vector),
497            ]
498        )
499
500        response = self._vector_api.query(
501            QueryRequest(
502                **args_dict,
503                _check_type=_check_type,
504                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
505            ),
506            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
507        )
508        return response
509
510    @validate_and_convert_errors
511    def query_namespaces(
512        self,
513        vector: List[float],
514        namespaces: List[str],
515        metric: Literal["cosine", "euclidean", "dotproduct"],
516        top_k: Optional[int] = None,
517        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
518        include_values: Optional[bool] = None,
519        include_metadata: Optional[bool] = None,
520        sparse_vector: Optional[
521            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
522        ] = None,
523        **kwargs,
524    ) -> QueryNamespacesResults:
525        """The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.
526
527        Since several asynchronous calls are made on your behalf when calling this method, you will need to tune the pool_threads and connection_pool_maxsize parameter of the Index constructor to suite your workload.
528
529        Examples:
530
531        ```python
532        from pinecone import Pinecone
533
534        pc = Pinecone(api_key="your-api-key")
535        index = pc.Index(
536            host="index-name",
537            pool_threads=32,
538            connection_pool_maxsize=32
539        )
540
541        query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
542        combined_results = index.query_namespaces(
543            vector=query_vec,
544            namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
545            metric="cosine",
546            top_k=10,
547            filter={'genre': {"$eq": "drama"}},
548            include_values=True,
549            include_metadata=True
550        )
551        for vec in combined_results.matches:
552            print(vec.id, vec.score)
553        print(combined_results.usage)
554        ```
555
556        Args:
557            vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
558            namespaces (List[str]): The list of namespaces to query.
559            top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
560            metric (str): Must be one of 'cosine', 'euclidean', 'dotproduct'. This is needed in order to merge results across namespaces, since the interpretation of score depends on the index metric type.
561            filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
562            include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
563            include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
564            sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
565
566        Returns:
567            QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.
568        """
569        if namespaces is None or len(namespaces) == 0:
570            raise ValueError("At least one namespace must be specified")
571        if len(vector) == 0:
572            raise ValueError("Query vector must not be empty")
573
574        overall_topk = top_k if top_k is not None else 10
575        aggregator = QueryResultsAggregator(top_k=overall_topk, metric=metric)
576
577        target_namespaces = set(namespaces)  # dedup namespaces
578        async_futures = [
579            self.query(
580                vector=vector,
581                namespace=ns,
582                top_k=overall_topk,
583                filter=filter,
584                include_values=include_values,
585                include_metadata=include_metadata,
586                sparse_vector=sparse_vector,
587                async_threadpool_executor=True,
588                _preload_content=False,
589                **kwargs,
590            )
591            for ns in target_namespaces
592        ]
593
594        for result in as_completed(async_futures):
595            raw_result = result.result()
596            response = json.loads(raw_result.data.decode("utf-8"))
597            aggregator.add_results(response)
598
599        final_results = aggregator.get_results()
600        return final_results
601
602    @validate_and_convert_errors
603    def update(
604        self,
605        id: str,
606        values: Optional[List[float]] = None,
607        set_metadata: Optional[
608            Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]
609        ] = None,
610        namespace: Optional[str] = None,
611        sparse_values: Optional[
612            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
613        ] = None,
614        **kwargs,
615    ) -> Dict[str, Any]:
616        """
617        The Update operation updates vector in a namespace.
618        If a value is included, it will overwrite the previous value.
619        If a set_metadata is included,
620        the values of the fields specified in it will be added or overwrite the previous value.
621
622        API reference: https://docs.pinecone.io/reference/update
623
624        Examples:
625            >>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
626            >>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace')
627            >>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
628            >>>              namespace='my_namespace')
629            >>> index.update(id='id1', values=[1, 2, 3], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]),
630            >>>              namespace='my_namespace')
631
632        Args:
633            id (str): Vector's unique id.
634            values (List[float]): vector values to set. [optional]
635            set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]):
636                metadata to set for vector. [optional]
637            namespace (str): Namespace name where to update the vector.. [optional]
638            sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector.
639                           Expected to be either a SparseValues object or a dict of the form:
640                           {'indices': List[int], 'values': List[float]} where the lists each have the same length.
641
642        Keyword Args:
643            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.UpdateRequest for more details.
644
645        Returns: An empty dictionary if the update was successful.
646        """
647        _check_type = kwargs.pop("_check_type", False)
648        sparse_values = self._parse_sparse_values_arg(sparse_values)
649        args_dict = parse_non_empty_args(
650            [
651                ("values", values),
652                ("set_metadata", set_metadata),
653                ("namespace", namespace),
654                ("sparse_values", sparse_values),
655            ]
656        )
657        return self._vector_api.update(
658            UpdateRequest(
659                id=id,
660                **args_dict,
661                _check_type=_check_type,
662                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
663            ),
664            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
665        )
666
667    @validate_and_convert_errors
668    def describe_index_stats(
669        self, filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None, **kwargs
670    ) -> DescribeIndexStatsResponse:
671        """
672        The DescribeIndexStats operation returns statistics about the index's contents.
673        For example: The vector count per namespace and the number of dimensions.
674
675        API reference: https://docs.pinecone.io/reference/describe_index_stats_post
676
677        Examples:
678            >>> index.describe_index_stats()
679            >>> index.describe_index_stats(filter={'key': 'value'})
680
681        Args:
682            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
683            If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
684            See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
685
686        Returns: DescribeIndexStatsResponse object which contains stats about the index.
687        """
688        _check_type = kwargs.pop("_check_type", False)
689        args_dict = parse_non_empty_args([("filter", filter)])
690
691        return self._vector_api.describe_index_stats(
692            DescribeIndexStatsRequest(
693                **args_dict,
694                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
695                _check_type=_check_type,
696            ),
697            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
698        )
699
700    @validate_and_convert_errors
701    def list_paginated(
702        self,
703        prefix: Optional[str] = None,
704        limit: Optional[int] = None,
705        pagination_token: Optional[str] = None,
706        namespace: Optional[str] = None,
707        **kwargs,
708    ) -> ListResponse:
709        """
710        The list_paginated operation finds vectors based on an id prefix within a single namespace.
711        It returns matching ids in a paginated form, with a pagination token to fetch the next page of results.
712        This id list can then be passed to fetch or delete operations, depending on your use case.
713
714        Consider using the `list` method to avoid having to handle pagination tokens manually.
715
716        Examples:
717            >>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
718            >>> [v.id for v in results.vectors]
719            ['99', '990', '991', '992', '993']
720            >>> results.pagination.next
721            eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
722            >>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
723
724        Args:
725            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
726                                    be used with the effect of listing all ids in a namespace [optional]
727            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
728            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
729                in the response if additional results are available. [optional]
730            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
731
732        Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.
733        """
734        args_dict = parse_non_empty_args(
735            [
736                ("prefix", prefix),
737                ("limit", limit),
738                ("namespace", namespace),
739                ("pagination_token", pagination_token),
740            ]
741        )
742        return self._vector_api.list(**args_dict, **kwargs)
743
744    @validate_and_convert_errors
745    def list(self, **kwargs):
746        """
747        The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields
748        a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your
749        behalf.
750
751        Examples:
752            >>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
753            >>>     print(ids)
754            ['99', '990', '991', '992', '993']
755            ['994', '995', '996', '997', '998']
756            ['999']
757
758        Args:
759            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
760                                    be used with the effect of listing all ids in a namespace [optional]
761            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
762            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
763                in the response if additional results are available. [optional]
764            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
765        """
766        done = False
767        while not done:
768            results = self.list_paginated(**kwargs)
769            if len(results.vectors) > 0:
770                yield [v.id for v in results.vectors]
771
772            if results.pagination:
773                kwargs.update({"pagination_token": results.pagination.next})
774            else:
775                done = True
776
777    @staticmethod
778    def _parse_sparse_values_arg(
779        sparse_values: Optional[Union[SparseValues, Dict[str, Union[List[float], List[int]]]]],
780    ) -> Optional[SparseValues]:
781        if sparse_values is None:
782            return None
783
784        if isinstance(sparse_values, SparseValues):
785            return sparse_values
786
787        if (
788            not isinstance(sparse_values, dict)
789            or "indices" not in sparse_values
790            or "values" not in sparse_values
791        ):
792            raise ValueError(
793                "Invalid sparse values argument. Expected a dict of: {'indices': List[int], 'values': List[float]}."
794                f"Received: {sparse_values}"
795            )
796
797        return SparseValues(indices=sparse_values["indices"], values=sparse_values["values"])

A client for interacting with a Pinecone index via REST API. For improved performance, use the Pinecone GRPC index client.

Index( api_key: str, host: str, pool_threads: Optional[int] = 1, additional_headers: Optional[Dict[str, str]] = {}, openapi_config=None, **kwargs)
 89    def __init__(
 90        self,
 91        api_key: str,
 92        host: str,
 93        pool_threads: Optional[int] = 1,
 94        additional_headers: Optional[Dict[str, str]] = {},
 95        openapi_config=None,
 96        **kwargs,
 97    ):
 98        super().__init__(
 99            api_key=api_key,
100            host=host,
101            pool_threads=pool_threads,
102            additional_headers=additional_headers,
103            openapi_config=openapi_config,
104            **kwargs,
105        )
106
107        self.config = ConfigBuilder.build(
108            api_key=api_key, host=host, additional_headers=additional_headers, **kwargs
109        )
110        self._openapi_config = ConfigBuilder.build_openapi_config(self.config, openapi_config)
111        self._pool_threads = pool_threads
112
113        if kwargs.get("connection_pool_maxsize", None):
114            self._openapi_config.connection_pool_maxsize = kwargs.get("connection_pool_maxsize")
115
116        self._vector_api = setup_openapi_client(
117            api_client_klass=ApiClient,
118            api_klass=DataPlaneApi,
119            config=self.config,
120            openapi_config=self._openapi_config,
121            pool_threads=self._pool_threads,
122            api_version=API_VERSION,
123        )
124
125        self._load_plugins()
config
@validate_and_convert_errors
def upsert( self, vectors: Union[List[Vector], List[tuple], List[dict]], namespace: Optional[str] = None, batch_size: Optional[int] = None, show_progress: bool = True, **kwargs) -> UpsertResponse:
148    @validate_and_convert_errors
149    def upsert(
150        self,
151        vectors: Union[List[Vector], List[tuple], List[dict]],
152        namespace: Optional[str] = None,
153        batch_size: Optional[int] = None,
154        show_progress: bool = True,
155        **kwargs,
156    ) -> UpsertResponse:
157        """
158        The upsert operation writes vectors into a namespace.
159        If a new value is upserted for an existing vector id, it will overwrite the previous value.
160
161        To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel
162
163        A vector can be represented by a 1) Vector object, a 2) tuple or 3) a dictionary
164
165        If a tuple is used, it must be of the form `(id, values, metadata)` or `(id, values)`.
166        where id is a string, vector is a list of floats, metadata is a dict,
167        and sparse_values is a dict of the form `{'indices': List[int], 'values': List[float]}`.
168
169        Examples:
170            >>> ('id1', [1.0, 2.0, 3.0], {'key': 'value'}, {'indices': [1, 2], 'values': [0.2, 0.4]})
171            >>> ('id1', [1.0, 2.0, 3.0], None, {'indices': [1, 2], 'values': [0.2, 0.4]})
172            >>> ('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])
173
174        If a Vector object is used, a Vector object must be of the form
175        `Vector(id, values, metadata, sparse_values)`, where metadata and sparse_values are optional
176        arguments.
177
178        Examples:
179            >>> Vector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'})
180            >>> Vector(id='id2', values=[1.0, 2.0, 3.0])
181            >>> Vector(id='id3', values=[1.0, 2.0, 3.0], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]))
182
183        **Note:** the dimension of each vector must match the dimension of the index.
184
185        If a dictionary is used, it must be in the form `{'id': str, 'values': List[float], 'sparse_values': {'indices': List[int], 'values': List[float]}, 'metadata': dict}`
186
187        Examples:
188            >>> index.upsert([('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])])
189            >>>
190            >>> index.upsert([{'id': 'id1', 'values': [1.0, 2.0, 3.0], 'metadata': {'key': 'value'}},
191            >>>               {'id': 'id2', 'values': [1.0, 2.0, 3.0], 'sparse_values': {'indices': [1, 8], 'values': [0.2, 0.4]}])
192            >>> index.upsert([Vector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
193            >>>               Vector(id='id2', values=[1.0, 2.0, 3.0], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]))])
194
195        API reference: https://docs.pinecone.io/reference/upsert
196
197        Args:
198            vectors (Union[List[Vector], List[Tuple]]): A list of vectors to upsert.
199            namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
200            batch_size (int): The number of vectors to upsert in each batch.
201                               If not specified, all vectors will be upserted in a single batch. [optional]
202            show_progress (bool): Whether to show a progress bar using tqdm.
203                                  Applied only if batch_size is provided. Default is True.
204        Keyword Args:
205            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.UpsertRequest for more details.
206
207        Returns: UpsertResponse, includes the number of vectors upserted.
208        """
209        _check_type = kwargs.pop("_check_type", True)
210
211        if kwargs.get("async_req", False) and batch_size is not None:
212            raise ValueError(
213                "async_req is not supported when batch_size is provided."
214                "To upsert in parallel, please follow: "
215                "https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel"
216            )
217
218        if batch_size is None:
219            return self._upsert_batch(vectors, namespace, _check_type, **kwargs)
220
221        if not isinstance(batch_size, int) or batch_size <= 0:
222            raise ValueError("batch_size must be a positive integer")
223
224        pbar = tqdm(total=len(vectors), disable=not show_progress, desc="Upserted vectors")
225        total_upserted = 0
226        for i in range(0, len(vectors), batch_size):
227            batch_result = self._upsert_batch(
228                vectors[i : i + batch_size], namespace, _check_type, **kwargs
229            )
230            pbar.update(batch_result.upserted_count)
231            # we can't use here pbar.n for the case show_progress=False
232            total_upserted += batch_result.upserted_count
233
234        return UpsertResponse(upserted_count=total_upserted)

The upsert operation writes vectors into a namespace. If a new value is upserted for an existing vector id, it will overwrite the previous value.

To upsert in parallel follow: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel

A vector can be represented by a 1) Vector object, a 2) tuple or 3) a dictionary

If a tuple is used, it must be of the form (id, values, metadata) or (id, values). where id is a string, vector is a list of floats, metadata is a dict, and sparse_values is a dict of the form {'indices': List[int], 'values': List[float]}.

Examples:
>>> ('id1', [1.0, 2.0, 3.0], {'key': 'value'}, {'indices': [1, 2], 'values': [0.2, 0.4]})
>>> ('id1', [1.0, 2.0, 3.0], None, {'indices': [1, 2], 'values': [0.2, 0.4]})
>>> ('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])

If a Vector object is used, a Vector object must be of the form Vector(id, values, metadata, sparse_values), where metadata and sparse_values are optional arguments.

Examples:
>>> Vector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'})
>>> Vector(id='id2', values=[1.0, 2.0, 3.0])
>>> Vector(id='id3', values=[1.0, 2.0, 3.0], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]))

Note: the dimension of each vector must match the dimension of the index.

If a dictionary is used, it must be in the form {'id': str, 'values': List[float], 'sparse_values': {'indices': List[int], 'values': List[float]}, 'metadata': dict}

Examples:
>>> index.upsert([('id1', [1.0, 2.0, 3.0], {'key': 'value'}), ('id2', [1.0, 2.0, 3.0])])
>>>
>>> index.upsert([{'id': 'id1', 'values': [1.0, 2.0, 3.0], 'metadata': {'key': 'value'}},
>>>               {'id': 'id2', 'values': [1.0, 2.0, 3.0], 'sparse_values': {'indices': [1, 8], 'values': [0.2, 0.4]}])
>>> index.upsert([Vector(id='id1', values=[1.0, 2.0, 3.0], metadata={'key': 'value'}),
>>>               Vector(id='id2', values=[1.0, 2.0, 3.0], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]))])

API reference: https://docs.pinecone.io/reference/upsert

Arguments:
  • vectors (Union[List[Vector], List[Tuple]]): A list of vectors to upsert.
  • namespace (str): The namespace to write to. If not specified, the default namespace is used. [optional]
  • batch_size (int): The number of vectors to upsert in each batch. If not specified, all vectors will be upserted in a single batch. [optional]
  • show_progress (bool): Whether to show a progress bar using tqdm. Applied only if batch_size is provided. Default is True.
Keyword Args:

Supports OpenAPI client keyword arguments. See pinecone.core.client.models.UpsertRequest for more details.

Returns: UpsertResponse, includes the number of vectors upserted.

def upsert_from_dataframe( self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True) -> UpsertResponse:
264    def upsert_from_dataframe(
265        self, df, namespace: Optional[str] = None, batch_size: int = 500, show_progress: bool = True
266    ) -> UpsertResponse:
267        """Upserts a dataframe into the index.
268
269        Args:
270            df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
271            namespace: The namespace to upsert into.
272            batch_size: The number of rows to upsert in a single batch.
273            show_progress: Whether to show a progress bar.
274        """
275        try:
276            import pandas as pd
277        except ImportError:
278            raise RuntimeError(
279                "The `pandas` package is not installed. Please install pandas to use `upsert_from_dataframe()`"
280            )
281
282        if not isinstance(df, pd.DataFrame):
283            raise ValueError(f"Only pandas dataframes are supported. Found: {type(df)}")
284
285        pbar = tqdm(total=len(df), disable=not show_progress, desc="sending upsert requests")
286        results = []
287        for chunk in self._iter_dataframe(df, batch_size=batch_size):
288            res = self.upsert(vectors=chunk, namespace=namespace)
289            pbar.update(len(chunk))
290            results.append(res)
291
292        upserted_count = 0
293        for res in results:
294            upserted_count += res.upserted_count
295
296        return UpsertResponse(upserted_count=upserted_count)

Upserts a dataframe into the index.

Arguments:
  • df: A pandas dataframe with the following columns: id, values, sparse_values, and metadata.
  • namespace: The namespace to upsert into.
  • batch_size: The number of rows to upsert in a single batch.
  • show_progress: Whether to show a progress bar.
@validate_and_convert_errors
def delete( self, ids: Optional[List[str]] = None, delete_all: Optional[bool] = None, namespace: Optional[str] = None, filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None, **kwargs) -> Dict[str, Any]:
298    @validate_and_convert_errors
299    def delete(
300        self,
301        ids: Optional[List[str]] = None,
302        delete_all: Optional[bool] = None,
303        namespace: Optional[str] = None,
304        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
305        **kwargs,
306    ) -> Dict[str, Any]:
307        """
308        The Delete operation deletes vectors from the index, from a single namespace.
309        No error raised if the vector id does not exist.
310        Note: for any delete call, if namespace is not specified, the default namespace is used.
311
312        Delete can occur in the following mutual exclusive ways:
313        1. Delete by ids from a single namespace
314        2. Delete all vectors from a single namespace by setting delete_all to True
315        3. Delete all vectors from a single namespace by specifying a metadata filter
316            (note that for this option delete all must be set to False)
317
318        API reference: https://docs.pinecone.io/reference/delete_post
319
320        Examples:
321            >>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
322            >>> index.delete(delete_all=True, namespace='my_namespace')
323            >>> index.delete(filter={'key': 'value'}, namespace='my_namespace')
324
325        Args:
326            ids (List[str]): Vector ids to delete [optional]
327            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional]
328                                Default is False.
329            namespace (str): The namespace to delete vectors from [optional]
330                            If not specified, the default namespace is used.
331            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
332                    If specified, the metadata filter here will be used to select the vectors to delete.
333                    This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True.
334                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
335
336        Keyword Args:
337          Supports OpenAPI client keyword arguments. See pinecone.core.client.models.DeleteRequest for more details.
338
339
340          Returns: An empty dictionary if the delete operation was successful.
341        """
342        _check_type = kwargs.pop("_check_type", False)
343        args_dict = parse_non_empty_args(
344            [("ids", ids), ("delete_all", delete_all), ("namespace", namespace), ("filter", filter)]
345        )
346
347        return self._vector_api.delete(
348            DeleteRequest(
349                **args_dict,
350                **{
351                    k: v
352                    for k, v in kwargs.items()
353                    if k not in _OPENAPI_ENDPOINT_PARAMS and v is not None
354                },
355                _check_type=_check_type,
356            ),
357            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
358        )

The Delete operation deletes vectors from the index, from a single namespace. No error raised if the vector id does not exist. Note: for any delete call, if namespace is not specified, the default namespace is used.

Delete can occur in the following mutual exclusive ways:

  1. Delete by ids from a single namespace
  2. Delete all vectors from a single namespace by setting delete_all to True
  3. Delete all vectors from a single namespace by specifying a metadata filter (note that for this option delete all must be set to False)

API reference: https://docs.pinecone.io/reference/delete_post

Examples:
>>> index.delete(ids=['id1', 'id2'], namespace='my_namespace')
>>> index.delete(delete_all=True, namespace='my_namespace')
>>> index.delete(filter={'key': 'value'}, namespace='my_namespace')
Arguments:
  • ids (List[str]): Vector ids to delete [optional]
  • delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional] Default is False.
  • namespace (str): The namespace to delete vectors from [optional] If not specified, the default namespace is used.
  • filter (Dict[str, Union[str, float, int, bool, List, dict]]): If specified, the metadata filter here will be used to select the vectors to delete. This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True. See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
Keyword Args:

Supports OpenAPI client keyword arguments. See pinecone.core.client.models.DeleteRequest for more details.

Returns: An empty dictionary if the delete operation was successful.

@validate_and_convert_errors
def fetch( self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> FetchResponse:
360    @validate_and_convert_errors
361    def fetch(self, ids: List[str], namespace: Optional[str] = None, **kwargs) -> FetchResponse:
362        """
363        The fetch operation looks up and returns vectors, by ID, from a single namespace.
364        The returned vectors include the vector data and/or metadata.
365
366        API reference: https://docs.pinecone.io/reference/fetch
367
368        Examples:
369            >>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
370            >>> index.fetch(ids=['id1', 'id2'])
371
372        Args:
373            ids (List[str]): The vector IDs to fetch.
374            namespace (str): The namespace to fetch vectors from.
375                             If not specified, the default namespace is used. [optional]
376        Keyword Args:
377            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.FetchResponse for more details.
378
379
380        Returns: FetchResponse object which contains the list of Vector objects, and namespace name.
381        """
382        args_dict = parse_non_empty_args([("namespace", namespace)])
383        return self._vector_api.fetch(ids=ids, **args_dict, **kwargs)

The fetch operation looks up and returns vectors, by ID, from a single namespace. The returned vectors include the vector data and/or metadata.

API reference: https://docs.pinecone.io/reference/fetch

Examples:
>>> index.fetch(ids=['id1', 'id2'], namespace='my_namespace')
>>> index.fetch(ids=['id1', 'id2'])
Arguments:
  • ids (List[str]): The vector IDs to fetch.
  • namespace (str): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
Keyword Args:

Supports OpenAPI client keyword arguments. See pinecone.core.client.models.FetchResponse for more details.

Returns: FetchResponse object which contains the list of Vector objects, and namespace name.

@validate_and_convert_errors
def query( self, *args, top_k: int, vector: Optional[List[float]] = None, id: Optional[str] = None, namespace: Optional[str] = None, filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None, include_values: Optional[bool] = None, include_metadata: Optional[bool] = None, sparse_vector: Union[SparseValues, Dict[str, Union[List[float], List[int]]], NoneType] = None, **kwargs) -> Union[QueryResponse, multiprocessing.pool.ApplyResult]:
385    @validate_and_convert_errors
386    def query(
387        self,
388        *args,
389        top_k: int,
390        vector: Optional[List[float]] = None,
391        id: Optional[str] = None,
392        namespace: Optional[str] = None,
393        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
394        include_values: Optional[bool] = None,
395        include_metadata: Optional[bool] = None,
396        sparse_vector: Optional[
397            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
398        ] = None,
399        **kwargs,
400    ) -> Union[QueryResponse, ApplyResult]:
401        """
402        The Query operation searches a namespace, using a query vector.
403        It retrieves the ids of the most similar items in a namespace, along with their similarity scores.
404
405        API reference: https://docs.pinecone.io/reference/query
406
407        Examples:
408            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
409            >>> index.query(id='id1', top_k=10, namespace='my_namespace')
410            >>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
411            >>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
412            >>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
413            >>>             top_k=10, namespace='my_namespace')
414            >>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
415            >>>             top_k=10, namespace='my_namespace')
416
417        Args:
418            vector (List[float]): The query vector. This should be the same length as the dimension of the index
419                                  being queried. Each `query()` request can contain only one of the parameters
420                                  `id` or `vector`.. [optional]
421            id (str): The unique ID of the vector to be used as a query vector.
422                      Each `query()` request can contain only one of the parameters
423                      `vector` or  `id`. [optional]
424            top_k (int): The number of results to return for each query. Must be an integer greater than 1.
425            namespace (str): The namespace to fetch vectors from.
426                             If not specified, the default namespace is used. [optional]
427            filter (Dict[str, Union[str, float, int, bool, List, dict]):
428                    The filter to apply. You can use vector metadata to limit your search.
429                    See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
430            include_values (bool): Indicates whether vector values are included in the response.
431                                   If omitted the server will use the default value of False [optional]
432            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.
433                                     If omitted the server will use the default value of False  [optional]
434            sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector.
435                            Expected to be either a SparseValues object or a dict of the form:
436                             {'indices': List[int], 'values': List[float]}, where the lists each have the same length.
437
438        Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects,
439                 and namespace name.
440        """
441
442        response = self._query(
443            *args,
444            top_k=top_k,
445            vector=vector,
446            id=id,
447            namespace=namespace,
448            filter=filter,
449            include_values=include_values,
450            include_metadata=include_metadata,
451            sparse_vector=sparse_vector,
452            **kwargs,
453        )
454
455        if kwargs.get("async_req", False) or kwargs.get("async_threadpool_executor", False):
456            return response
457        else:
458            return parse_query_response(response)

The Query operation searches a namespace, using a query vector. It retrieves the ids of the most similar items in a namespace, along with their similarity scores.

API reference: https://docs.pinecone.io/reference/query

Examples:
>>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace')
>>> index.query(id='id1', top_k=10, namespace='my_namespace')
>>> index.query(vector=[1, 2, 3], top_k=10, namespace='my_namespace', filter={'key': 'value'})
>>> index.query(id='id1', top_k=10, namespace='my_namespace', include_metadata=True, include_values=True)
>>> index.query(vector=[1, 2, 3], sparse_vector={'indices': [1, 2], 'values': [0.2, 0.4]},
>>>             top_k=10, namespace='my_namespace')
>>> index.query(vector=[1, 2, 3], sparse_vector=SparseValues([1, 2], [0.2, 0.4]),
>>>             top_k=10, namespace='my_namespace')
Arguments:
  • vector (List[float]): The query vector. This should be the same length as the dimension of the index being queried. Each query() request can contain only one of the parameters id or vector.. [optional]
  • id (str): The unique ID of the vector to be used as a query vector. Each query() request can contain only one of the parameters vector or id. [optional]
  • top_k (int): The number of results to return for each query. Must be an integer greater than 1.
  • namespace (str): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
  • filter (Dict[str, Union[str, float, int, bool, List, dict]): The filter to apply. You can use vector metadata to limit your search. See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
  • include_values (bool): Indicates whether vector values are included in the response. If omitted the server will use the default value of False [optional]
  • include_metadata (bool): Indicates whether metadata is included in the response as well as the ids. If omitted the server will use the default value of False [optional]
  • sparse_vector: (Union[SparseValues, Dict[str, Union[List[float], List[int]]]]): sparse values of the query vector. Expected to be either a SparseValues object or a dict of the form: {'indices': List[int], 'values': List[float]}, where the lists each have the same length.

Returns: QueryResponse object which contains the list of the closest vectors as ScoredVector objects, and namespace name.

@validate_and_convert_errors
def query_namespaces( self, vector: List[float], namespaces: List[str], metric: Literal['cosine', 'euclidean', 'dotproduct'], top_k: Optional[int] = None, filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None, include_values: Optional[bool] = None, include_metadata: Optional[bool] = None, sparse_vector: Union[SparseValues, Dict[str, Union[List[float], List[int]]], NoneType] = None, **kwargs) -> pinecone.data.query_results_aggregator.QueryNamespacesResults:
510    @validate_and_convert_errors
511    def query_namespaces(
512        self,
513        vector: List[float],
514        namespaces: List[str],
515        metric: Literal["cosine", "euclidean", "dotproduct"],
516        top_k: Optional[int] = None,
517        filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None,
518        include_values: Optional[bool] = None,
519        include_metadata: Optional[bool] = None,
520        sparse_vector: Optional[
521            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
522        ] = None,
523        **kwargs,
524    ) -> QueryNamespacesResults:
525        """The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.
526
527        Since several asynchronous calls are made on your behalf when calling this method, you will need to tune the pool_threads and connection_pool_maxsize parameter of the Index constructor to suite your workload.
528
529        Examples:
530
531        ```python
532        from pinecone import Pinecone
533
534        pc = Pinecone(api_key="your-api-key")
535        index = pc.Index(
536            host="index-name",
537            pool_threads=32,
538            connection_pool_maxsize=32
539        )
540
541        query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
542        combined_results = index.query_namespaces(
543            vector=query_vec,
544            namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
545            metric="cosine",
546            top_k=10,
547            filter={'genre': {"$eq": "drama"}},
548            include_values=True,
549            include_metadata=True
550        )
551        for vec in combined_results.matches:
552            print(vec.id, vec.score)
553        print(combined_results.usage)
554        ```
555
556        Args:
557            vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
558            namespaces (List[str]): The list of namespaces to query.
559            top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
560            metric (str): Must be one of 'cosine', 'euclidean', 'dotproduct'. This is needed in order to merge results across namespaces, since the interpretation of score depends on the index metric type.
561            filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
562            include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
563            include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
564            sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
565
566        Returns:
567            QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.
568        """
569        if namespaces is None or len(namespaces) == 0:
570            raise ValueError("At least one namespace must be specified")
571        if len(vector) == 0:
572            raise ValueError("Query vector must not be empty")
573
574        overall_topk = top_k if top_k is not None else 10
575        aggregator = QueryResultsAggregator(top_k=overall_topk, metric=metric)
576
577        target_namespaces = set(namespaces)  # dedup namespaces
578        async_futures = [
579            self.query(
580                vector=vector,
581                namespace=ns,
582                top_k=overall_topk,
583                filter=filter,
584                include_values=include_values,
585                include_metadata=include_metadata,
586                sparse_vector=sparse_vector,
587                async_threadpool_executor=True,
588                _preload_content=False,
589                **kwargs,
590            )
591            for ns in target_namespaces
592        ]
593
594        for result in as_completed(async_futures):
595            raw_result = result.result()
596            response = json.loads(raw_result.data.decode("utf-8"))
597            aggregator.add_results(response)
598
599        final_results = aggregator.get_results()
600        return final_results

The query_namespaces() method is used to make a query to multiple namespaces in parallel and combine the results into one result set.

Since several asynchronous calls are made on your behalf when calling this method, you will need to tune the pool_threads and connection_pool_maxsize parameter of the Index constructor to suite your workload.

Examples:

from pinecone import Pinecone

pc = Pinecone(api_key="your-api-key")
index = pc.Index(
    host="index-name",
    pool_threads=32,
    connection_pool_maxsize=32
)

query_vec = [0.1, 0.2, 0.3] # An embedding that matches the index dimension
combined_results = index.query_namespaces(
    vector=query_vec,
    namespaces=['ns1', 'ns2', 'ns3', 'ns4'],
    metric="cosine",
    top_k=10,
    filter={'genre': {"$eq": "drama"}},
    include_values=True,
    include_metadata=True
)
for vec in combined_results.matches:
    print(vec.id, vec.score)
print(combined_results.usage)
Arguments:
  • vector (List[float]): The query vector, must be the same length as the dimension of the index being queried.
  • namespaces (List[str]): The list of namespaces to query.
  • top_k (Optional[int], optional): The number of results you would like to request from each namespace. Defaults to 10.
  • metric (str): Must be one of 'cosine', 'euclidean', 'dotproduct'. This is needed in order to merge results across namespaces, since the interpretation of score depends on the index metric type.
  • filter (Optional[Dict[str, Union[str, float, int, bool, List, dict]]], optional): Pass an optional filter to filter results based on metadata. Defaults to None.
  • include_values (Optional[bool], optional): Boolean field indicating whether vector values should be included with results. Defaults to None.
  • include_metadata (Optional[bool], optional): Boolean field indicating whether vector metadata should be included with results. Defaults to None.
  • sparse_vector (Optional[ Union[SparseValues, Dict[str, Union[List[float], List[int]]]] ], optional): If you are working with a dotproduct index, you can pass a sparse vector as part of your hybrid search. Defaults to None.
Returns:

QueryNamespacesResults: A QueryNamespacesResults object containing the combined results from all namespaces, as well as the combined usage cost in read units.

@validate_and_convert_errors
def update( self, id: str, values: Optional[List[float]] = None, set_metadata: Optional[Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]] = None, namespace: Optional[str] = None, sparse_values: Union[SparseValues, Dict[str, Union[List[float], List[int]]], NoneType] = None, **kwargs) -> Dict[str, Any]:
602    @validate_and_convert_errors
603    def update(
604        self,
605        id: str,
606        values: Optional[List[float]] = None,
607        set_metadata: Optional[
608            Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]
609        ] = None,
610        namespace: Optional[str] = None,
611        sparse_values: Optional[
612            Union[SparseValues, Dict[str, Union[List[float], List[int]]]]
613        ] = None,
614        **kwargs,
615    ) -> Dict[str, Any]:
616        """
617        The Update operation updates vector in a namespace.
618        If a value is included, it will overwrite the previous value.
619        If a set_metadata is included,
620        the values of the fields specified in it will be added or overwrite the previous value.
621
622        API reference: https://docs.pinecone.io/reference/update
623
624        Examples:
625            >>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
626            >>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace')
627            >>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
628            >>>              namespace='my_namespace')
629            >>> index.update(id='id1', values=[1, 2, 3], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]),
630            >>>              namespace='my_namespace')
631
632        Args:
633            id (str): Vector's unique id.
634            values (List[float]): vector values to set. [optional]
635            set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]):
636                metadata to set for vector. [optional]
637            namespace (str): Namespace name where to update the vector.. [optional]
638            sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector.
639                           Expected to be either a SparseValues object or a dict of the form:
640                           {'indices': List[int], 'values': List[float]} where the lists each have the same length.
641
642        Keyword Args:
643            Supports OpenAPI client keyword arguments. See pinecone.core.client.models.UpdateRequest for more details.
644
645        Returns: An empty dictionary if the update was successful.
646        """
647        _check_type = kwargs.pop("_check_type", False)
648        sparse_values = self._parse_sparse_values_arg(sparse_values)
649        args_dict = parse_non_empty_args(
650            [
651                ("values", values),
652                ("set_metadata", set_metadata),
653                ("namespace", namespace),
654                ("sparse_values", sparse_values),
655            ]
656        )
657        return self._vector_api.update(
658            UpdateRequest(
659                id=id,
660                **args_dict,
661                _check_type=_check_type,
662                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
663            ),
664            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
665        )

The Update operation updates vector in a namespace. If a value is included, it will overwrite the previous value. If a set_metadata is included, the values of the fields specified in it will be added or overwrite the previous value.

API reference: https://docs.pinecone.io/reference/update

Examples:
>>> index.update(id='id1', values=[1, 2, 3], namespace='my_namespace')
>>> index.update(id='id1', set_metadata={'key': 'value'}, namespace='my_namespace')
>>> index.update(id='id1', values=[1, 2, 3], sparse_values={'indices': [1, 2], 'values': [0.2, 0.4]},
>>>              namespace='my_namespace')
>>> index.update(id='id1', values=[1, 2, 3], sparse_values=SparseValues(indices=[1, 2], values=[0.2, 0.4]),
>>>              namespace='my_namespace')
Arguments:
  • id (str): Vector's unique id.
  • values (List[float]): vector values to set. [optional]
  • set_metadata (Dict[str, Union[str, float, int, bool, List[int], List[float], List[str]]]]): metadata to set for vector. [optional]
  • namespace (str): Namespace name where to update the vector.. [optional]
  • sparse_values: (Dict[str, Union[List[float], List[int]]]): sparse values to update for the vector. Expected to be either a SparseValues object or a dict of the form: {'indices': List[int], 'values': List[float]} where the lists each have the same length.
Keyword Args:

Supports OpenAPI client keyword arguments. See pinecone.core.client.models.UpdateRequest for more details.

Returns: An empty dictionary if the update was successful.

@validate_and_convert_errors
def describe_index_stats( self, filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None, **kwargs) -> DescribeIndexStatsResponse:
667    @validate_and_convert_errors
668    def describe_index_stats(
669        self, filter: Optional[Dict[str, Union[str, float, int, bool, List, dict]]] = None, **kwargs
670    ) -> DescribeIndexStatsResponse:
671        """
672        The DescribeIndexStats operation returns statistics about the index's contents.
673        For example: The vector count per namespace and the number of dimensions.
674
675        API reference: https://docs.pinecone.io/reference/describe_index_stats_post
676
677        Examples:
678            >>> index.describe_index_stats()
679            >>> index.describe_index_stats(filter={'key': 'value'})
680
681        Args:
682            filter (Dict[str, Union[str, float, int, bool, List, dict]]):
683            If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
684            See https://www.pinecone.io/docs/metadata-filtering/.. [optional]
685
686        Returns: DescribeIndexStatsResponse object which contains stats about the index.
687        """
688        _check_type = kwargs.pop("_check_type", False)
689        args_dict = parse_non_empty_args([("filter", filter)])
690
691        return self._vector_api.describe_index_stats(
692            DescribeIndexStatsRequest(
693                **args_dict,
694                **{k: v for k, v in kwargs.items() if k not in _OPENAPI_ENDPOINT_PARAMS},
695                _check_type=_check_type,
696            ),
697            **{k: v for k, v in kwargs.items() if k in _OPENAPI_ENDPOINT_PARAMS},
698        )

The DescribeIndexStats operation returns statistics about the index's contents. For example: The vector count per namespace and the number of dimensions.

API reference: https://docs.pinecone.io/reference/describe_index_stats_post

Examples:
>>> index.describe_index_stats()
>>> index.describe_index_stats(filter={'key': 'value'})
Arguments:
  • filter (Dict[str, Union[str, float, int, bool, List, dict]]):
  • If this parameter is present, the operation only returns statistics for vectors that satisfy the filter.
  • See https: //www.pinecone.io/docs/metadata-filtering/.. [optional]

Returns: DescribeIndexStatsResponse object which contains stats about the index.

@validate_and_convert_errors
def list_paginated( self, prefix: Optional[str] = None, limit: Optional[int] = None, pagination_token: Optional[str] = None, namespace: Optional[str] = None, **kwargs) -> pinecone.core.openapi.data.model.list_response.ListResponse:
700    @validate_and_convert_errors
701    def list_paginated(
702        self,
703        prefix: Optional[str] = None,
704        limit: Optional[int] = None,
705        pagination_token: Optional[str] = None,
706        namespace: Optional[str] = None,
707        **kwargs,
708    ) -> ListResponse:
709        """
710        The list_paginated operation finds vectors based on an id prefix within a single namespace.
711        It returns matching ids in a paginated form, with a pagination token to fetch the next page of results.
712        This id list can then be passed to fetch or delete operations, depending on your use case.
713
714        Consider using the `list` method to avoid having to handle pagination tokens manually.
715
716        Examples:
717            >>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
718            >>> [v.id for v in results.vectors]
719            ['99', '990', '991', '992', '993']
720            >>> results.pagination.next
721            eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
722            >>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
723
724        Args:
725            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
726                                    be used with the effect of listing all ids in a namespace [optional]
727            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
728            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
729                in the response if additional results are available. [optional]
730            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
731
732        Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.
733        """
734        args_dict = parse_non_empty_args(
735            [
736                ("prefix", prefix),
737                ("limit", limit),
738                ("namespace", namespace),
739                ("pagination_token", pagination_token),
740            ]
741        )
742        return self._vector_api.list(**args_dict, **kwargs)

The list_paginated operation finds vectors based on an id prefix within a single namespace. It returns matching ids in a paginated form, with a pagination token to fetch the next page of results. This id list can then be passed to fetch or delete operations, depending on your use case.

Consider using the list method to avoid having to handle pagination tokens manually.

Examples:
>>> results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace')
>>> [v.id for v in results.vectors]
['99', '990', '991', '992', '993']
>>> results.pagination.next
eyJza2lwX3Bhc3QiOiI5OTMiLCJwcmVmaXgiOiI5OSJ9
>>> next_results = index.list_paginated(prefix='99', limit=5, namespace='my_namespace', pagination_token=results.pagination.next)
Arguments:
  • prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will be used with the effect of listing all ids in a namespace [optional]
  • limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
  • pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned in the response if additional results are available. [optional]
  • namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]

Returns: ListResponse object which contains the list of ids, the namespace name, pagination information, and usage showing the number of read_units consumed.

@validate_and_convert_errors
def list(self, **kwargs):
744    @validate_and_convert_errors
745    def list(self, **kwargs):
746        """
747        The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields
748        a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your
749        behalf.
750
751        Examples:
752            >>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
753            >>>     print(ids)
754            ['99', '990', '991', '992', '993']
755            ['994', '995', '996', '997', '998']
756            ['999']
757
758        Args:
759            prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will
760                                    be used with the effect of listing all ids in a namespace [optional]
761            limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
762            pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned
763                in the response if additional results are available. [optional]
764            namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
765        """
766        done = False
767        while not done:
768            results = self.list_paginated(**kwargs)
769            if len(results.vectors) > 0:
770                yield [v.id for v in results.vectors]
771
772            if results.pagination:
773                kwargs.update({"pagination_token": results.pagination.next})
774            else:
775                done = True

The list operation accepts all of the same arguments as list_paginated, and returns a generator that yields a list of the matching vector ids in each page of results. It automatically handles pagination tokens on your behalf.

Examples:
>>> for ids in index.list(prefix='99', limit=5, namespace='my_namespace'):
>>>     print(ids)
['99', '990', '991', '992', '993']
['994', '995', '996', '997', '998']
['999']
Arguments:
  • prefix (Optional[str]): The id prefix to match. If unspecified, an empty string prefix will be used with the effect of listing all ids in a namespace [optional]
  • limit (Optional[int]): The maximum number of ids to return. If unspecified, the server will use a default value. [optional]
  • pagination_token (Optional[str]): A token needed to fetch the next page of results. This token is returned in the response if additional results are available. [optional]
  • namespace (Optional[str]): The namespace to fetch vectors from. If not specified, the default namespace is used. [optional]
class FetchResponse(pinecone.core.openapi.shared.model_utils.ModelNormal):
 41class FetchResponse(ModelNormal):
 42    """NOTE: This class is auto generated by OpenAPI Generator.
 43    Ref: https://openapi-generator.tech
 44
 45    Do not edit the class manually.
 46
 47    Attributes:
 48      allowed_values (dict): The key is the tuple path to the attribute
 49          and the for var_name this is (var_name,). The value is a dict
 50          with a capitalized key describing the allowed value and an allowed
 51          value. These dicts store the allowed enum values.
 52      attribute_map (dict): The key is attribute name
 53          and the value is json key in definition.
 54      discriminator_value_class_map (dict): A dict to go from the discriminator
 55          variable value to the discriminator class name.
 56      validations (dict): The key is the tuple path to the attribute
 57          and the for var_name this is (var_name,). The value is a dict
 58          that stores validations for max_length, min_length, max_items,
 59          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 60          inclusive_minimum, and regex.
 61      additional_properties_type (tuple): A tuple of classes accepted
 62          as additional properties values.
 63    """
 64
 65    allowed_values = {}
 66
 67    validations = {}
 68
 69    @cached_property
 70    def additional_properties_type():
 71        """
 72        This must be a method because a model may have properties that are
 73        of type self, this must run after the class is loaded
 74        """
 75        lazy_import()
 76        return (
 77            bool,
 78            dict,
 79            float,
 80            int,
 81            list,
 82            str,
 83            none_type,
 84        )  # noqa: E501
 85
 86    _nullable = False
 87
 88    @cached_property
 89    def openapi_types():
 90        """
 91        This must be a method because a model may have properties that are
 92        of type self, this must run after the class is loaded
 93
 94        Returns
 95            openapi_types (dict): The key is attribute name
 96                and the value is attribute type.
 97        """
 98        lazy_import()
 99        return {
100            "vectors": ({str: (Vector,)},),  # noqa: E501
101            "namespace": (str,),  # noqa: E501
102            "usage": (Usage,),  # noqa: E501
103        }
104
105    @cached_property
106    def discriminator():
107        return None
108
109    attribute_map = {
110        "vectors": "vectors",  # noqa: E501
111        "namespace": "namespace",  # noqa: E501
112        "usage": "usage",  # noqa: E501
113    }
114
115    read_only_vars = {}
116
117    _composed_schemas = {}
118
119    @classmethod
120    @convert_js_args_to_python_args
121    def _from_openapi_data(cls, *args, **kwargs):  # noqa: E501
122        """FetchResponse - a model defined in OpenAPI
123
124        Keyword Args:
125            _check_type (bool): if True, values for parameters in openapi_types
126                                will be type checked and a TypeError will be
127                                raised if the wrong type is input.
128                                Defaults to True
129            _path_to_item (tuple/list): This is a list of keys or values to
130                                drill down to the model in received_data
131                                when deserializing a response
132            _spec_property_naming (bool): True if the variable names in the input data
133                                are serialized names, as specified in the OpenAPI document.
134                                False if the variable names in the input data
135                                are pythonic names, e.g. snake case (default)
136            _configuration (Configuration): the instance to use when
137                                deserializing a file_type parameter.
138                                If passed, type conversion is attempted
139                                If omitted no type conversion is done.
140            _visited_composed_classes (tuple): This stores a tuple of
141                                classes that we have traveled through so that
142                                if we see that class again we will not use its
143                                discriminator again.
144                                When traveling through a discriminator, the
145                                composed schema that is
146                                is traveled through is added to this set.
147                                For example if Animal has a discriminator
148                                petType and we pass in "Dog", and the class Dog
149                                allOf includes Animal, we move through Animal
150                                once using the discriminator, and pick Dog.
151                                Then in Dog, we will make an instance of the
152                                Animal class but this time we won't travel
153                                through its discriminator because we passed in
154                                _visited_composed_classes = (Animal,)
155            vectors ({str: (Vector,)}): [optional]  # noqa: E501
156            namespace (str): The namespace of the vectors.. [optional]  # noqa: E501
157            usage (Usage): [optional]  # noqa: E501
158        """
159
160        _check_type = kwargs.pop("_check_type", True)
161        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
162        _path_to_item = kwargs.pop("_path_to_item", ())
163        _configuration = kwargs.pop("_configuration", None)
164        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
165
166        self = super(OpenApiModel, cls).__new__(cls)
167
168        if args:
169            raise PineconeApiTypeError(
170                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
171                % (
172                    args,
173                    self.__class__.__name__,
174                ),
175                path_to_item=_path_to_item,
176                valid_classes=(self.__class__,),
177            )
178
179        self._data_store = {}
180        self._check_type = _check_type
181        self._spec_property_naming = _spec_property_naming
182        self._path_to_item = _path_to_item
183        self._configuration = _configuration
184        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
185
186        for var_name, var_value in kwargs.items():
187            if (
188                var_name not in self.attribute_map
189                and self._configuration is not None
190                and self._configuration.discard_unknown_keys
191                and self.additional_properties_type is None
192            ):
193                # discard variable.
194                continue
195            setattr(self, var_name, var_value)
196        return self
197
198    required_properties = set(
199        [
200            "_data_store",
201            "_check_type",
202            "_spec_property_naming",
203            "_path_to_item",
204            "_configuration",
205            "_visited_composed_classes",
206        ]
207    )
208
209    @convert_js_args_to_python_args
210    def __init__(self, *args, **kwargs):  # noqa: E501
211        """FetchResponse - a model defined in OpenAPI
212
213        Keyword Args:
214            _check_type (bool): if True, values for parameters in openapi_types
215                                will be type checked and a TypeError will be
216                                raised if the wrong type is input.
217                                Defaults to True
218            _path_to_item (tuple/list): This is a list of keys or values to
219                                drill down to the model in received_data
220                                when deserializing a response
221            _spec_property_naming (bool): True if the variable names in the input data
222                                are serialized names, as specified in the OpenAPI document.
223                                False if the variable names in the input data
224                                are pythonic names, e.g. snake case (default)
225            _configuration (Configuration): the instance to use when
226                                deserializing a file_type parameter.
227                                If passed, type conversion is attempted
228                                If omitted no type conversion is done.
229            _visited_composed_classes (tuple): This stores a tuple of
230                                classes that we have traveled through so that
231                                if we see that class again we will not use its
232                                discriminator again.
233                                When traveling through a discriminator, the
234                                composed schema that is
235                                is traveled through is added to this set.
236                                For example if Animal has a discriminator
237                                petType and we pass in "Dog", and the class Dog
238                                allOf includes Animal, we move through Animal
239                                once using the discriminator, and pick Dog.
240                                Then in Dog, we will make an instance of the
241                                Animal class but this time we won't travel
242                                through its discriminator because we passed in
243                                _visited_composed_classes = (Animal,)
244            vectors ({str: (Vector,)}): [optional]  # noqa: E501
245            namespace (str): The namespace of the vectors.. [optional]  # noqa: E501
246            usage (Usage): [optional]  # noqa: E501
247        """
248
249        _check_type = kwargs.pop("_check_type", True)
250        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
251        _path_to_item = kwargs.pop("_path_to_item", ())
252        _configuration = kwargs.pop("_configuration", None)
253        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
254
255        if args:
256            raise PineconeApiTypeError(
257                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
258                % (
259                    args,
260                    self.__class__.__name__,
261                ),
262                path_to_item=_path_to_item,
263                valid_classes=(self.__class__,),
264            )
265
266        self._data_store = {}
267        self._check_type = _check_type
268        self._spec_property_naming = _spec_property_naming
269        self._path_to_item = _path_to_item
270        self._configuration = _configuration
271        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
272
273        for var_name, var_value in kwargs.items():
274            if (
275                var_name not in self.attribute_map
276                and self._configuration is not None
277                and self._configuration.discard_unknown_keys
278                and self.additional_properties_type is None
279            ):
280                # discard variable.
281                continue
282            setattr(self, var_name, var_value)
283            if var_name in self.read_only_vars:
284                raise PineconeApiAttributeError(
285                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
286                    f"class with read only attributes."
287                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
FetchResponse(*args, **kwargs)
209    @convert_js_args_to_python_args
210    def __init__(self, *args, **kwargs):  # noqa: E501
211        """FetchResponse - a model defined in OpenAPI
212
213        Keyword Args:
214            _check_type (bool): if True, values for parameters in openapi_types
215                                will be type checked and a TypeError will be
216                                raised if the wrong type is input.
217                                Defaults to True
218            _path_to_item (tuple/list): This is a list of keys or values to
219                                drill down to the model in received_data
220                                when deserializing a response
221            _spec_property_naming (bool): True if the variable names in the input data
222                                are serialized names, as specified in the OpenAPI document.
223                                False if the variable names in the input data
224                                are pythonic names, e.g. snake case (default)
225            _configuration (Configuration): the instance to use when
226                                deserializing a file_type parameter.
227                                If passed, type conversion is attempted
228                                If omitted no type conversion is done.
229            _visited_composed_classes (tuple): This stores a tuple of
230                                classes that we have traveled through so that
231                                if we see that class again we will not use its
232                                discriminator again.
233                                When traveling through a discriminator, the
234                                composed schema that is
235                                is traveled through is added to this set.
236                                For example if Animal has a discriminator
237                                petType and we pass in "Dog", and the class Dog
238                                allOf includes Animal, we move through Animal
239                                once using the discriminator, and pick Dog.
240                                Then in Dog, we will make an instance of the
241                                Animal class but this time we won't travel
242                                through its discriminator because we passed in
243                                _visited_composed_classes = (Animal,)
244            vectors ({str: (Vector,)}): [optional]  # noqa: E501
245            namespace (str): The namespace of the vectors.. [optional]  # noqa: E501
246            usage (Usage): [optional]  # noqa: E501
247        """
248
249        _check_type = kwargs.pop("_check_type", True)
250        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
251        _path_to_item = kwargs.pop("_path_to_item", ())
252        _configuration = kwargs.pop("_configuration", None)
253        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
254
255        if args:
256            raise PineconeApiTypeError(
257                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
258                % (
259                    args,
260                    self.__class__.__name__,
261                ),
262                path_to_item=_path_to_item,
263                valid_classes=(self.__class__,),
264            )
265
266        self._data_store = {}
267        self._check_type = _check_type
268        self._spec_property_naming = _spec_property_naming
269        self._path_to_item = _path_to_item
270        self._configuration = _configuration
271        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
272
273        for var_name, var_value in kwargs.items():
274            if (
275                var_name not in self.attribute_map
276                and self._configuration is not None
277                and self._configuration.discard_unknown_keys
278                and self.additional_properties_type is None
279            ):
280                # discard variable.
281                continue
282            setattr(self, var_name, var_value)
283            if var_name in self.read_only_vars:
284                raise PineconeApiAttributeError(
285                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
286                    f"class with read only attributes."
287                )

FetchResponse - a model defined in OpenAPI

Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) vectors ({str: (Vector,)}): [optional] # noqa: E501 namespace (str): The namespace of the vectors.. [optional] # noqa: E501 usage (Usage): [optional] # noqa: E501

allowed_values = {}
validations = {}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'vectors': 'vectors', 'namespace': 'namespace', 'usage': 'usage'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class QueryRequest(pinecone.core.openapi.shared.model_utils.ModelNormal):
 41class QueryRequest(ModelNormal):
 42    """NOTE: This class is auto generated by OpenAPI Generator.
 43    Ref: https://openapi-generator.tech
 44
 45    Do not edit the class manually.
 46
 47    Attributes:
 48      allowed_values (dict): The key is the tuple path to the attribute
 49          and the for var_name this is (var_name,). The value is a dict
 50          with a capitalized key describing the allowed value and an allowed
 51          value. These dicts store the allowed enum values.
 52      attribute_map (dict): The key is attribute name
 53          and the value is json key in definition.
 54      discriminator_value_class_map (dict): A dict to go from the discriminator
 55          variable value to the discriminator class name.
 56      validations (dict): The key is the tuple path to the attribute
 57          and the for var_name this is (var_name,). The value is a dict
 58          that stores validations for max_length, min_length, max_items,
 59          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 60          inclusive_minimum, and regex.
 61      additional_properties_type (tuple): A tuple of classes accepted
 62          as additional properties values.
 63    """
 64
 65    allowed_values = {}
 66
 67    validations = {
 68        ("top_k",): {
 69            "inclusive_maximum": 10000,
 70            "inclusive_minimum": 1,
 71        },
 72        ("queries",): {},
 73        ("vector",): {},
 74        ("id",): {
 75            "max_length": 512,
 76        },
 77    }
 78
 79    @cached_property
 80    def additional_properties_type():
 81        """
 82        This must be a method because a model may have properties that are
 83        of type self, this must run after the class is loaded
 84        """
 85        lazy_import()
 86        return (
 87            bool,
 88            dict,
 89            float,
 90            int,
 91            list,
 92            str,
 93            none_type,
 94        )  # noqa: E501
 95
 96    _nullable = False
 97
 98    @cached_property
 99    def openapi_types():
100        """
101        This must be a method because a model may have properties that are
102        of type self, this must run after the class is loaded
103
104        Returns
105            openapi_types (dict): The key is attribute name
106                and the value is attribute type.
107        """
108        lazy_import()
109        return {
110            "top_k": (int,),  # noqa: E501
111            "namespace": (str,),  # noqa: E501
112            "filter": ({str: (bool, dict, float, int, list, str, none_type)},),  # noqa: E501
113            "include_values": (bool,),  # noqa: E501
114            "include_metadata": (bool,),  # noqa: E501
115            "queries": ([QueryVector],),  # noqa: E501
116            "vector": ([float],),  # noqa: E501
117            "sparse_vector": (SparseValues,),  # noqa: E501
118            "id": (str,),  # noqa: E501
119        }
120
121    @cached_property
122    def discriminator():
123        return None
124
125    attribute_map = {
126        "top_k": "topK",  # noqa: E501
127        "namespace": "namespace",  # noqa: E501
128        "filter": "filter",  # noqa: E501
129        "include_values": "includeValues",  # noqa: E501
130        "include_metadata": "includeMetadata",  # noqa: E501
131        "queries": "queries",  # noqa: E501
132        "vector": "vector",  # noqa: E501
133        "sparse_vector": "sparseVector",  # noqa: E501
134        "id": "id",  # noqa: E501
135    }
136
137    read_only_vars = {}
138
139    _composed_schemas = {}
140
141    @classmethod
142    @convert_js_args_to_python_args
143    def _from_openapi_data(cls, top_k, *args, **kwargs):  # noqa: E501
144        """QueryRequest - a model defined in OpenAPI
145
146        Args:
147            top_k (int): The number of results to return for each query.
148
149        Keyword Args:
150            _check_type (bool): if True, values for parameters in openapi_types
151                                will be type checked and a TypeError will be
152                                raised if the wrong type is input.
153                                Defaults to True
154            _path_to_item (tuple/list): This is a list of keys or values to
155                                drill down to the model in received_data
156                                when deserializing a response
157            _spec_property_naming (bool): True if the variable names in the input data
158                                are serialized names, as specified in the OpenAPI document.
159                                False if the variable names in the input data
160                                are pythonic names, e.g. snake case (default)
161            _configuration (Configuration): the instance to use when
162                                deserializing a file_type parameter.
163                                If passed, type conversion is attempted
164                                If omitted no type conversion is done.
165            _visited_composed_classes (tuple): This stores a tuple of
166                                classes that we have traveled through so that
167                                if we see that class again we will not use its
168                                discriminator again.
169                                When traveling through a discriminator, the
170                                composed schema that is
171                                is traveled through is added to this set.
172                                For example if Animal has a discriminator
173                                petType and we pass in "Dog", and the class Dog
174                                allOf includes Animal, we move through Animal
175                                once using the discriminator, and pick Dog.
176                                Then in Dog, we will make an instance of the
177                                Animal class but this time we won't travel
178                                through its discriminator because we passed in
179                                _visited_composed_classes = (Animal,)
180            namespace (str): The namespace to query.. [optional]  # noqa: E501
181            filter ({str: (bool, dict, float, int, list, str, none_type)}): The filter to apply. You can use vector metadata to limit your search. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata).. [optional]  # noqa: E501
182            include_values (bool): Indicates whether vector values are included in the response.. [optional] if omitted the server will use the default value of False  # noqa: E501
183            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.. [optional] if omitted the server will use the default value of False  # noqa: E501
184            queries ([QueryVector]): DEPRECATED. The query vectors. Each `query()` request can contain only one of the parameters `queries`, `vector`, or  `id`.. [optional]  # noqa: E501
185            vector ([float]): The query vector. This should be the same length as the dimension of the index being queried. Each `query()` request can contain only one of the parameters `id` or `vector`.. [optional]  # noqa: E501
186            sparse_vector (SparseValues): [optional]  # noqa: E501
187            id (str): The unique ID of the vector to be used as a query vector. Each `query()` request can contain only one of the parameters `queries`, `vector`, or  `id`.. [optional]  # noqa: E501
188        """
189
190        _check_type = kwargs.pop("_check_type", True)
191        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
192        _path_to_item = kwargs.pop("_path_to_item", ())
193        _configuration = kwargs.pop("_configuration", None)
194        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
195
196        self = super(OpenApiModel, cls).__new__(cls)
197
198        if args:
199            raise PineconeApiTypeError(
200                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
201                % (
202                    args,
203                    self.__class__.__name__,
204                ),
205                path_to_item=_path_to_item,
206                valid_classes=(self.__class__,),
207            )
208
209        self._data_store = {}
210        self._check_type = _check_type
211        self._spec_property_naming = _spec_property_naming
212        self._path_to_item = _path_to_item
213        self._configuration = _configuration
214        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
215
216        self.top_k = top_k
217        for var_name, var_value in kwargs.items():
218            if (
219                var_name not in self.attribute_map
220                and self._configuration is not None
221                and self._configuration.discard_unknown_keys
222                and self.additional_properties_type is None
223            ):
224                # discard variable.
225                continue
226            setattr(self, var_name, var_value)
227        return self
228
229    required_properties = set(
230        [
231            "_data_store",
232            "_check_type",
233            "_spec_property_naming",
234            "_path_to_item",
235            "_configuration",
236            "_visited_composed_classes",
237        ]
238    )
239
240    @convert_js_args_to_python_args
241    def __init__(self, top_k, *args, **kwargs):  # noqa: E501
242        """QueryRequest - a model defined in OpenAPI
243
244        Args:
245            top_k (int): The number of results to return for each query.
246
247        Keyword Args:
248            _check_type (bool): if True, values for parameters in openapi_types
249                                will be type checked and a TypeError will be
250                                raised if the wrong type is input.
251                                Defaults to True
252            _path_to_item (tuple/list): This is a list of keys or values to
253                                drill down to the model in received_data
254                                when deserializing a response
255            _spec_property_naming (bool): True if the variable names in the input data
256                                are serialized names, as specified in the OpenAPI document.
257                                False if the variable names in the input data
258                                are pythonic names, e.g. snake case (default)
259            _configuration (Configuration): the instance to use when
260                                deserializing a file_type parameter.
261                                If passed, type conversion is attempted
262                                If omitted no type conversion is done.
263            _visited_composed_classes (tuple): This stores a tuple of
264                                classes that we have traveled through so that
265                                if we see that class again we will not use its
266                                discriminator again.
267                                When traveling through a discriminator, the
268                                composed schema that is
269                                is traveled through is added to this set.
270                                For example if Animal has a discriminator
271                                petType and we pass in "Dog", and the class Dog
272                                allOf includes Animal, we move through Animal
273                                once using the discriminator, and pick Dog.
274                                Then in Dog, we will make an instance of the
275                                Animal class but this time we won't travel
276                                through its discriminator because we passed in
277                                _visited_composed_classes = (Animal,)
278            namespace (str): The namespace to query.. [optional]  # noqa: E501
279            filter ({str: (bool, dict, float, int, list, str, none_type)}): The filter to apply. You can use vector metadata to limit your search. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata).. [optional]  # noqa: E501
280            include_values (bool): Indicates whether vector values are included in the response.. [optional] if omitted the server will use the default value of False  # noqa: E501
281            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.. [optional] if omitted the server will use the default value of False  # noqa: E501
282            queries ([QueryVector]): DEPRECATED. The query vectors. Each `query()` request can contain only one of the parameters `queries`, `vector`, or  `id`.. [optional]  # noqa: E501
283            vector ([float]): The query vector. This should be the same length as the dimension of the index being queried. Each `query()` request can contain only one of the parameters `id` or `vector`.. [optional]  # noqa: E501
284            sparse_vector (SparseValues): [optional]  # noqa: E501
285            id (str): The unique ID of the vector to be used as a query vector. Each `query()` request can contain only one of the parameters `queries`, `vector`, or  `id`.. [optional]  # noqa: E501
286        """
287
288        _check_type = kwargs.pop("_check_type", True)
289        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
290        _path_to_item = kwargs.pop("_path_to_item", ())
291        _configuration = kwargs.pop("_configuration", None)
292        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
293
294        if args:
295            raise PineconeApiTypeError(
296                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
297                % (
298                    args,
299                    self.__class__.__name__,
300                ),
301                path_to_item=_path_to_item,
302                valid_classes=(self.__class__,),
303            )
304
305        self._data_store = {}
306        self._check_type = _check_type
307        self._spec_property_naming = _spec_property_naming
308        self._path_to_item = _path_to_item
309        self._configuration = _configuration
310        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
311
312        self.top_k = top_k
313        for var_name, var_value in kwargs.items():
314            if (
315                var_name not in self.attribute_map
316                and self._configuration is not None
317                and self._configuration.discard_unknown_keys
318                and self.additional_properties_type is None
319            ):
320                # discard variable.
321                continue
322            setattr(self, var_name, var_value)
323            if var_name in self.read_only_vars:
324                raise PineconeApiAttributeError(
325                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
326                    f"class with read only attributes."
327                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
QueryRequest(top_k, *args, **kwargs)
240    @convert_js_args_to_python_args
241    def __init__(self, top_k, *args, **kwargs):  # noqa: E501
242        """QueryRequest - a model defined in OpenAPI
243
244        Args:
245            top_k (int): The number of results to return for each query.
246
247        Keyword Args:
248            _check_type (bool): if True, values for parameters in openapi_types
249                                will be type checked and a TypeError will be
250                                raised if the wrong type is input.
251                                Defaults to True
252            _path_to_item (tuple/list): This is a list of keys or values to
253                                drill down to the model in received_data
254                                when deserializing a response
255            _spec_property_naming (bool): True if the variable names in the input data
256                                are serialized names, as specified in the OpenAPI document.
257                                False if the variable names in the input data
258                                are pythonic names, e.g. snake case (default)
259            _configuration (Configuration): the instance to use when
260                                deserializing a file_type parameter.
261                                If passed, type conversion is attempted
262                                If omitted no type conversion is done.
263            _visited_composed_classes (tuple): This stores a tuple of
264                                classes that we have traveled through so that
265                                if we see that class again we will not use its
266                                discriminator again.
267                                When traveling through a discriminator, the
268                                composed schema that is
269                                is traveled through is added to this set.
270                                For example if Animal has a discriminator
271                                petType and we pass in "Dog", and the class Dog
272                                allOf includes Animal, we move through Animal
273                                once using the discriminator, and pick Dog.
274                                Then in Dog, we will make an instance of the
275                                Animal class but this time we won't travel
276                                through its discriminator because we passed in
277                                _visited_composed_classes = (Animal,)
278            namespace (str): The namespace to query.. [optional]  # noqa: E501
279            filter ({str: (bool, dict, float, int, list, str, none_type)}): The filter to apply. You can use vector metadata to limit your search. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata).. [optional]  # noqa: E501
280            include_values (bool): Indicates whether vector values are included in the response.. [optional] if omitted the server will use the default value of False  # noqa: E501
281            include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.. [optional] if omitted the server will use the default value of False  # noqa: E501
282            queries ([QueryVector]): DEPRECATED. The query vectors. Each `query()` request can contain only one of the parameters `queries`, `vector`, or  `id`.. [optional]  # noqa: E501
283            vector ([float]): The query vector. This should be the same length as the dimension of the index being queried. Each `query()` request can contain only one of the parameters `id` or `vector`.. [optional]  # noqa: E501
284            sparse_vector (SparseValues): [optional]  # noqa: E501
285            id (str): The unique ID of the vector to be used as a query vector. Each `query()` request can contain only one of the parameters `queries`, `vector`, or  `id`.. [optional]  # noqa: E501
286        """
287
288        _check_type = kwargs.pop("_check_type", True)
289        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
290        _path_to_item = kwargs.pop("_path_to_item", ())
291        _configuration = kwargs.pop("_configuration", None)
292        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
293
294        if args:
295            raise PineconeApiTypeError(
296                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
297                % (
298                    args,
299                    self.__class__.__name__,
300                ),
301                path_to_item=_path_to_item,
302                valid_classes=(self.__class__,),
303            )
304
305        self._data_store = {}
306        self._check_type = _check_type
307        self._spec_property_naming = _spec_property_naming
308        self._path_to_item = _path_to_item
309        self._configuration = _configuration
310        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
311
312        self.top_k = top_k
313        for var_name, var_value in kwargs.items():
314            if (
315                var_name not in self.attribute_map
316                and self._configuration is not None
317                and self._configuration.discard_unknown_keys
318                and self.additional_properties_type is None
319            ):
320                # discard variable.
321                continue
322            setattr(self, var_name, var_value)
323            if var_name in self.read_only_vars:
324                raise PineconeApiAttributeError(
325                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
326                    f"class with read only attributes."
327                )

QueryRequest - a model defined in OpenAPI

Arguments:
  • top_k (int): The number of results to return for each query.
Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) namespace (str): The namespace to query.. [optional] # noqa: E501 filter ({str: (bool, dict, float, int, list, str, none_type)}): The filter to apply. You can use vector metadata to limit your search. See Filter with metadata.. [optional] # noqa: E501 include_values (bool): Indicates whether vector values are included in the response.. [optional] if omitted the server will use the default value of False # noqa: E501 include_metadata (bool): Indicates whether metadata is included in the response as well as the ids.. [optional] if omitted the server will use the default value of False # noqa: E501 queries ([QueryVector]): DEPRECATED. The query vectors. Each query() request can contain only one of the parameters queries, vector, or id.. [optional] # noqa: E501 vector ([float]): The query vector. This should be the same length as the dimension of the index being queried. Each query() request can contain only one of the parameters id or vector.. [optional] # noqa: E501 sparse_vector (SparseValues): [optional] # noqa: E501 id (str): The unique ID of the vector to be used as a query vector. Each query() request can contain only one of the parameters queries, vector, or id.. [optional] # noqa: E501

allowed_values = {}
validations = {('top_k',): {'inclusive_maximum': 10000, 'inclusive_minimum': 1}, ('queries',): {}, ('vector',): {}, ('id',): {'max_length': 512}}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'top_k': 'topK', 'namespace': 'namespace', 'filter': 'filter', 'include_values': 'includeValues', 'include_metadata': 'includeMetadata', 'queries': 'queries', 'vector': 'vector', 'sparse_vector': 'sparseVector', 'id': 'id'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
top_k
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class QueryResponse(pinecone.core.openapi.shared.model_utils.ModelNormal):
 43class QueryResponse(ModelNormal):
 44    """NOTE: This class is auto generated by OpenAPI Generator.
 45    Ref: https://openapi-generator.tech
 46
 47    Do not edit the class manually.
 48
 49    Attributes:
 50      allowed_values (dict): The key is the tuple path to the attribute
 51          and the for var_name this is (var_name,). The value is a dict
 52          with a capitalized key describing the allowed value and an allowed
 53          value. These dicts store the allowed enum values.
 54      attribute_map (dict): The key is attribute name
 55          and the value is json key in definition.
 56      discriminator_value_class_map (dict): A dict to go from the discriminator
 57          variable value to the discriminator class name.
 58      validations (dict): The key is the tuple path to the attribute
 59          and the for var_name this is (var_name,). The value is a dict
 60          that stores validations for max_length, min_length, max_items,
 61          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 62          inclusive_minimum, and regex.
 63      additional_properties_type (tuple): A tuple of classes accepted
 64          as additional properties values.
 65    """
 66
 67    allowed_values = {}
 68
 69    validations = {}
 70
 71    @cached_property
 72    def additional_properties_type():
 73        """
 74        This must be a method because a model may have properties that are
 75        of type self, this must run after the class is loaded
 76        """
 77        lazy_import()
 78        return (
 79            bool,
 80            dict,
 81            float,
 82            int,
 83            list,
 84            str,
 85            none_type,
 86        )  # noqa: E501
 87
 88    _nullable = False
 89
 90    @cached_property
 91    def openapi_types():
 92        """
 93        This must be a method because a model may have properties that are
 94        of type self, this must run after the class is loaded
 95
 96        Returns
 97            openapi_types (dict): The key is attribute name
 98                and the value is attribute type.
 99        """
100        lazy_import()
101        return {
102            "results": ([SingleQueryResults],),  # noqa: E501
103            "matches": ([ScoredVector],),  # noqa: E501
104            "namespace": (str,),  # noqa: E501
105            "usage": (Usage,),  # noqa: E501
106        }
107
108    @cached_property
109    def discriminator():
110        return None
111
112    attribute_map = {
113        "results": "results",  # noqa: E501
114        "matches": "matches",  # noqa: E501
115        "namespace": "namespace",  # noqa: E501
116        "usage": "usage",  # noqa: E501
117    }
118
119    read_only_vars = {}
120
121    _composed_schemas = {}
122
123    @classmethod
124    @convert_js_args_to_python_args
125    def _from_openapi_data(cls, *args, **kwargs):  # noqa: E501
126        """QueryResponse - a model defined in OpenAPI
127
128        Keyword Args:
129            _check_type (bool): if True, values for parameters in openapi_types
130                                will be type checked and a TypeError will be
131                                raised if the wrong type is input.
132                                Defaults to True
133            _path_to_item (tuple/list): This is a list of keys or values to
134                                drill down to the model in received_data
135                                when deserializing a response
136            _spec_property_naming (bool): True if the variable names in the input data
137                                are serialized names, as specified in the OpenAPI document.
138                                False if the variable names in the input data
139                                are pythonic names, e.g. snake case (default)
140            _configuration (Configuration): the instance to use when
141                                deserializing a file_type parameter.
142                                If passed, type conversion is attempted
143                                If omitted no type conversion is done.
144            _visited_composed_classes (tuple): This stores a tuple of
145                                classes that we have traveled through so that
146                                if we see that class again we will not use its
147                                discriminator again.
148                                When traveling through a discriminator, the
149                                composed schema that is
150                                is traveled through is added to this set.
151                                For example if Animal has a discriminator
152                                petType and we pass in "Dog", and the class Dog
153                                allOf includes Animal, we move through Animal
154                                once using the discriminator, and pick Dog.
155                                Then in Dog, we will make an instance of the
156                                Animal class but this time we won't travel
157                                through its discriminator because we passed in
158                                _visited_composed_classes = (Animal,)
159            results ([SingleQueryResults]): DEPRECATED. The results of each query. The order is the same as `QueryRequest.queries`.. [optional]  # noqa: E501
160            matches ([ScoredVector]): The matches for the vectors.. [optional]  # noqa: E501
161            namespace (str): The namespace for the vectors.. [optional]  # noqa: E501
162            usage (Usage): [optional]  # noqa: E501
163        """
164
165        _check_type = kwargs.pop("_check_type", True)
166        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
167        _path_to_item = kwargs.pop("_path_to_item", ())
168        _configuration = kwargs.pop("_configuration", None)
169        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
170
171        self = super(OpenApiModel, cls).__new__(cls)
172
173        if args:
174            raise PineconeApiTypeError(
175                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
176                % (
177                    args,
178                    self.__class__.__name__,
179                ),
180                path_to_item=_path_to_item,
181                valid_classes=(self.__class__,),
182            )
183
184        self._data_store = {}
185        self._check_type = _check_type
186        self._spec_property_naming = _spec_property_naming
187        self._path_to_item = _path_to_item
188        self._configuration = _configuration
189        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
190
191        for var_name, var_value in kwargs.items():
192            if (
193                var_name not in self.attribute_map
194                and self._configuration is not None
195                and self._configuration.discard_unknown_keys
196                and self.additional_properties_type is None
197            ):
198                # discard variable.
199                continue
200            setattr(self, var_name, var_value)
201        return self
202
203    required_properties = set(
204        [
205            "_data_store",
206            "_check_type",
207            "_spec_property_naming",
208            "_path_to_item",
209            "_configuration",
210            "_visited_composed_classes",
211        ]
212    )
213
214    @convert_js_args_to_python_args
215    def __init__(self, *args, **kwargs):  # noqa: E501
216        """QueryResponse - a model defined in OpenAPI
217
218        Keyword Args:
219            _check_type (bool): if True, values for parameters in openapi_types
220                                will be type checked and a TypeError will be
221                                raised if the wrong type is input.
222                                Defaults to True
223            _path_to_item (tuple/list): This is a list of keys or values to
224                                drill down to the model in received_data
225                                when deserializing a response
226            _spec_property_naming (bool): True if the variable names in the input data
227                                are serialized names, as specified in the OpenAPI document.
228                                False if the variable names in the input data
229                                are pythonic names, e.g. snake case (default)
230            _configuration (Configuration): the instance to use when
231                                deserializing a file_type parameter.
232                                If passed, type conversion is attempted
233                                If omitted no type conversion is done.
234            _visited_composed_classes (tuple): This stores a tuple of
235                                classes that we have traveled through so that
236                                if we see that class again we will not use its
237                                discriminator again.
238                                When traveling through a discriminator, the
239                                composed schema that is
240                                is traveled through is added to this set.
241                                For example if Animal has a discriminator
242                                petType and we pass in "Dog", and the class Dog
243                                allOf includes Animal, we move through Animal
244                                once using the discriminator, and pick Dog.
245                                Then in Dog, we will make an instance of the
246                                Animal class but this time we won't travel
247                                through its discriminator because we passed in
248                                _visited_composed_classes = (Animal,)
249            results ([SingleQueryResults]): DEPRECATED. The results of each query. The order is the same as `QueryRequest.queries`.. [optional]  # noqa: E501
250            matches ([ScoredVector]): The matches for the vectors.. [optional]  # noqa: E501
251            namespace (str): The namespace for the vectors.. [optional]  # noqa: E501
252            usage (Usage): [optional]  # noqa: E501
253        """
254
255        _check_type = kwargs.pop("_check_type", True)
256        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
257        _path_to_item = kwargs.pop("_path_to_item", ())
258        _configuration = kwargs.pop("_configuration", None)
259        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
260
261        if args:
262            raise PineconeApiTypeError(
263                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
264                % (
265                    args,
266                    self.__class__.__name__,
267                ),
268                path_to_item=_path_to_item,
269                valid_classes=(self.__class__,),
270            )
271
272        self._data_store = {}
273        self._check_type = _check_type
274        self._spec_property_naming = _spec_property_naming
275        self._path_to_item = _path_to_item
276        self._configuration = _configuration
277        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
278
279        for var_name, var_value in kwargs.items():
280            if (
281                var_name not in self.attribute_map
282                and self._configuration is not None
283                and self._configuration.discard_unknown_keys
284                and self.additional_properties_type is None
285            ):
286                # discard variable.
287                continue
288            setattr(self, var_name, var_value)
289            if var_name in self.read_only_vars:
290                raise PineconeApiAttributeError(
291                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
292                    f"class with read only attributes."
293                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
QueryResponse(*args, **kwargs)
214    @convert_js_args_to_python_args
215    def __init__(self, *args, **kwargs):  # noqa: E501
216        """QueryResponse - a model defined in OpenAPI
217
218        Keyword Args:
219            _check_type (bool): if True, values for parameters in openapi_types
220                                will be type checked and a TypeError will be
221                                raised if the wrong type is input.
222                                Defaults to True
223            _path_to_item (tuple/list): This is a list of keys or values to
224                                drill down to the model in received_data
225                                when deserializing a response
226            _spec_property_naming (bool): True if the variable names in the input data
227                                are serialized names, as specified in the OpenAPI document.
228                                False if the variable names in the input data
229                                are pythonic names, e.g. snake case (default)
230            _configuration (Configuration): the instance to use when
231                                deserializing a file_type parameter.
232                                If passed, type conversion is attempted
233                                If omitted no type conversion is done.
234            _visited_composed_classes (tuple): This stores a tuple of
235                                classes that we have traveled through so that
236                                if we see that class again we will not use its
237                                discriminator again.
238                                When traveling through a discriminator, the
239                                composed schema that is
240                                is traveled through is added to this set.
241                                For example if Animal has a discriminator
242                                petType and we pass in "Dog", and the class Dog
243                                allOf includes Animal, we move through Animal
244                                once using the discriminator, and pick Dog.
245                                Then in Dog, we will make an instance of the
246                                Animal class but this time we won't travel
247                                through its discriminator because we passed in
248                                _visited_composed_classes = (Animal,)
249            results ([SingleQueryResults]): DEPRECATED. The results of each query. The order is the same as `QueryRequest.queries`.. [optional]  # noqa: E501
250            matches ([ScoredVector]): The matches for the vectors.. [optional]  # noqa: E501
251            namespace (str): The namespace for the vectors.. [optional]  # noqa: E501
252            usage (Usage): [optional]  # noqa: E501
253        """
254
255        _check_type = kwargs.pop("_check_type", True)
256        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
257        _path_to_item = kwargs.pop("_path_to_item", ())
258        _configuration = kwargs.pop("_configuration", None)
259        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
260
261        if args:
262            raise PineconeApiTypeError(
263                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
264                % (
265                    args,
266                    self.__class__.__name__,
267                ),
268                path_to_item=_path_to_item,
269                valid_classes=(self.__class__,),
270            )
271
272        self._data_store = {}
273        self._check_type = _check_type
274        self._spec_property_naming = _spec_property_naming
275        self._path_to_item = _path_to_item
276        self._configuration = _configuration
277        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
278
279        for var_name, var_value in kwargs.items():
280            if (
281                var_name not in self.attribute_map
282                and self._configuration is not None
283                and self._configuration.discard_unknown_keys
284                and self.additional_properties_type is None
285            ):
286                # discard variable.
287                continue
288            setattr(self, var_name, var_value)
289            if var_name in self.read_only_vars:
290                raise PineconeApiAttributeError(
291                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
292                    f"class with read only attributes."
293                )

QueryResponse - a model defined in OpenAPI

Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) results ([SingleQueryResults]): DEPRECATED. The results of each query. The order is the same as QueryRequest.queries.. [optional] # noqa: E501 matches ([ScoredVector]): The matches for the vectors.. [optional] # noqa: E501 namespace (str): The namespace for the vectors.. [optional] # noqa: E501 usage (Usage): [optional] # noqa: E501

allowed_values = {}
validations = {}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'results': 'results', 'matches': 'matches', 'namespace': 'namespace', 'usage': 'usage'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class RpcStatus(pinecone.core.openapi.shared.model_utils.ModelNormal):
 39class RpcStatus(ModelNormal):
 40    """NOTE: This class is auto generated by OpenAPI Generator.
 41    Ref: https://openapi-generator.tech
 42
 43    Do not edit the class manually.
 44
 45    Attributes:
 46      allowed_values (dict): The key is the tuple path to the attribute
 47          and the for var_name this is (var_name,). The value is a dict
 48          with a capitalized key describing the allowed value and an allowed
 49          value. These dicts store the allowed enum values.
 50      attribute_map (dict): The key is attribute name
 51          and the value is json key in definition.
 52      discriminator_value_class_map (dict): A dict to go from the discriminator
 53          variable value to the discriminator class name.
 54      validations (dict): The key is the tuple path to the attribute
 55          and the for var_name this is (var_name,). The value is a dict
 56          that stores validations for max_length, min_length, max_items,
 57          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 58          inclusive_minimum, and regex.
 59      additional_properties_type (tuple): A tuple of classes accepted
 60          as additional properties values.
 61    """
 62
 63    allowed_values = {}
 64
 65    validations = {}
 66
 67    @cached_property
 68    def additional_properties_type():
 69        """
 70        This must be a method because a model may have properties that are
 71        of type self, this must run after the class is loaded
 72        """
 73        lazy_import()
 74        return (
 75            bool,
 76            dict,
 77            float,
 78            int,
 79            list,
 80            str,
 81            none_type,
 82        )  # noqa: E501
 83
 84    _nullable = False
 85
 86    @cached_property
 87    def openapi_types():
 88        """
 89        This must be a method because a model may have properties that are
 90        of type self, this must run after the class is loaded
 91
 92        Returns
 93            openapi_types (dict): The key is attribute name
 94                and the value is attribute type.
 95        """
 96        lazy_import()
 97        return {
 98            "code": (int,),  # noqa: E501
 99            "message": (str,),  # noqa: E501
100            "details": ([ProtobufAny],),  # noqa: E501
101        }
102
103    @cached_property
104    def discriminator():
105        return None
106
107    attribute_map = {
108        "code": "code",  # noqa: E501
109        "message": "message",  # noqa: E501
110        "details": "details",  # noqa: E501
111    }
112
113    read_only_vars = {}
114
115    _composed_schemas = {}
116
117    @classmethod
118    @convert_js_args_to_python_args
119    def _from_openapi_data(cls, *args, **kwargs):  # noqa: E501
120        """RpcStatus - a model defined in OpenAPI
121
122        Keyword Args:
123            _check_type (bool): if True, values for parameters in openapi_types
124                                will be type checked and a TypeError will be
125                                raised if the wrong type is input.
126                                Defaults to True
127            _path_to_item (tuple/list): This is a list of keys or values to
128                                drill down to the model in received_data
129                                when deserializing a response
130            _spec_property_naming (bool): True if the variable names in the input data
131                                are serialized names, as specified in the OpenAPI document.
132                                False if the variable names in the input data
133                                are pythonic names, e.g. snake case (default)
134            _configuration (Configuration): the instance to use when
135                                deserializing a file_type parameter.
136                                If passed, type conversion is attempted
137                                If omitted no type conversion is done.
138            _visited_composed_classes (tuple): This stores a tuple of
139                                classes that we have traveled through so that
140                                if we see that class again we will not use its
141                                discriminator again.
142                                When traveling through a discriminator, the
143                                composed schema that is
144                                is traveled through is added to this set.
145                                For example if Animal has a discriminator
146                                petType and we pass in "Dog", and the class Dog
147                                allOf includes Animal, we move through Animal
148                                once using the discriminator, and pick Dog.
149                                Then in Dog, we will make an instance of the
150                                Animal class but this time we won't travel
151                                through its discriminator because we passed in
152                                _visited_composed_classes = (Animal,)
153            code (int): [optional]  # noqa: E501
154            message (str): [optional]  # noqa: E501
155            details ([ProtobufAny]): [optional]  # noqa: E501
156        """
157
158        _check_type = kwargs.pop("_check_type", True)
159        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
160        _path_to_item = kwargs.pop("_path_to_item", ())
161        _configuration = kwargs.pop("_configuration", None)
162        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
163
164        self = super(OpenApiModel, cls).__new__(cls)
165
166        if args:
167            raise PineconeApiTypeError(
168                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
169                % (
170                    args,
171                    self.__class__.__name__,
172                ),
173                path_to_item=_path_to_item,
174                valid_classes=(self.__class__,),
175            )
176
177        self._data_store = {}
178        self._check_type = _check_type
179        self._spec_property_naming = _spec_property_naming
180        self._path_to_item = _path_to_item
181        self._configuration = _configuration
182        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
183
184        for var_name, var_value in kwargs.items():
185            if (
186                var_name not in self.attribute_map
187                and self._configuration is not None
188                and self._configuration.discard_unknown_keys
189                and self.additional_properties_type is None
190            ):
191                # discard variable.
192                continue
193            setattr(self, var_name, var_value)
194        return self
195
196    required_properties = set(
197        [
198            "_data_store",
199            "_check_type",
200            "_spec_property_naming",
201            "_path_to_item",
202            "_configuration",
203            "_visited_composed_classes",
204        ]
205    )
206
207    @convert_js_args_to_python_args
208    def __init__(self, *args, **kwargs):  # noqa: E501
209        """RpcStatus - a model defined in OpenAPI
210
211        Keyword Args:
212            _check_type (bool): if True, values for parameters in openapi_types
213                                will be type checked and a TypeError will be
214                                raised if the wrong type is input.
215                                Defaults to True
216            _path_to_item (tuple/list): This is a list of keys or values to
217                                drill down to the model in received_data
218                                when deserializing a response
219            _spec_property_naming (bool): True if the variable names in the input data
220                                are serialized names, as specified in the OpenAPI document.
221                                False if the variable names in the input data
222                                are pythonic names, e.g. snake case (default)
223            _configuration (Configuration): the instance to use when
224                                deserializing a file_type parameter.
225                                If passed, type conversion is attempted
226                                If omitted no type conversion is done.
227            _visited_composed_classes (tuple): This stores a tuple of
228                                classes that we have traveled through so that
229                                if we see that class again we will not use its
230                                discriminator again.
231                                When traveling through a discriminator, the
232                                composed schema that is
233                                is traveled through is added to this set.
234                                For example if Animal has a discriminator
235                                petType and we pass in "Dog", and the class Dog
236                                allOf includes Animal, we move through Animal
237                                once using the discriminator, and pick Dog.
238                                Then in Dog, we will make an instance of the
239                                Animal class but this time we won't travel
240                                through its discriminator because we passed in
241                                _visited_composed_classes = (Animal,)
242            code (int): [optional]  # noqa: E501
243            message (str): [optional]  # noqa: E501
244            details ([ProtobufAny]): [optional]  # noqa: E501
245        """
246
247        _check_type = kwargs.pop("_check_type", True)
248        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
249        _path_to_item = kwargs.pop("_path_to_item", ())
250        _configuration = kwargs.pop("_configuration", None)
251        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
252
253        if args:
254            raise PineconeApiTypeError(
255                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
256                % (
257                    args,
258                    self.__class__.__name__,
259                ),
260                path_to_item=_path_to_item,
261                valid_classes=(self.__class__,),
262            )
263
264        self._data_store = {}
265        self._check_type = _check_type
266        self._spec_property_naming = _spec_property_naming
267        self._path_to_item = _path_to_item
268        self._configuration = _configuration
269        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
270
271        for var_name, var_value in kwargs.items():
272            if (
273                var_name not in self.attribute_map
274                and self._configuration is not None
275                and self._configuration.discard_unknown_keys
276                and self.additional_properties_type is None
277            ):
278                # discard variable.
279                continue
280            setattr(self, var_name, var_value)
281            if var_name in self.read_only_vars:
282                raise PineconeApiAttributeError(
283                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
284                    f"class with read only attributes."
285                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
RpcStatus(*args, **kwargs)
207    @convert_js_args_to_python_args
208    def __init__(self, *args, **kwargs):  # noqa: E501
209        """RpcStatus - a model defined in OpenAPI
210
211        Keyword Args:
212            _check_type (bool): if True, values for parameters in openapi_types
213                                will be type checked and a TypeError will be
214                                raised if the wrong type is input.
215                                Defaults to True
216            _path_to_item (tuple/list): This is a list of keys or values to
217                                drill down to the model in received_data
218                                when deserializing a response
219            _spec_property_naming (bool): True if the variable names in the input data
220                                are serialized names, as specified in the OpenAPI document.
221                                False if the variable names in the input data
222                                are pythonic names, e.g. snake case (default)
223            _configuration (Configuration): the instance to use when
224                                deserializing a file_type parameter.
225                                If passed, type conversion is attempted
226                                If omitted no type conversion is done.
227            _visited_composed_classes (tuple): This stores a tuple of
228                                classes that we have traveled through so that
229                                if we see that class again we will not use its
230                                discriminator again.
231                                When traveling through a discriminator, the
232                                composed schema that is
233                                is traveled through is added to this set.
234                                For example if Animal has a discriminator
235                                petType and we pass in "Dog", and the class Dog
236                                allOf includes Animal, we move through Animal
237                                once using the discriminator, and pick Dog.
238                                Then in Dog, we will make an instance of the
239                                Animal class but this time we won't travel
240                                through its discriminator because we passed in
241                                _visited_composed_classes = (Animal,)
242            code (int): [optional]  # noqa: E501
243            message (str): [optional]  # noqa: E501
244            details ([ProtobufAny]): [optional]  # noqa: E501
245        """
246
247        _check_type = kwargs.pop("_check_type", True)
248        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
249        _path_to_item = kwargs.pop("_path_to_item", ())
250        _configuration = kwargs.pop("_configuration", None)
251        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
252
253        if args:
254            raise PineconeApiTypeError(
255                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
256                % (
257                    args,
258                    self.__class__.__name__,
259                ),
260                path_to_item=_path_to_item,
261                valid_classes=(self.__class__,),
262            )
263
264        self._data_store = {}
265        self._check_type = _check_type
266        self._spec_property_naming = _spec_property_naming
267        self._path_to_item = _path_to_item
268        self._configuration = _configuration
269        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
270
271        for var_name, var_value in kwargs.items():
272            if (
273                var_name not in self.attribute_map
274                and self._configuration is not None
275                and self._configuration.discard_unknown_keys
276                and self.additional_properties_type is None
277            ):
278                # discard variable.
279                continue
280            setattr(self, var_name, var_value)
281            if var_name in self.read_only_vars:
282                raise PineconeApiAttributeError(
283                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
284                    f"class with read only attributes."
285                )

RpcStatus - a model defined in OpenAPI

Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) code (int): [optional] # noqa: E501 message (str): [optional] # noqa: E501 details ([ProtobufAny]): [optional] # noqa: E501

allowed_values = {}
validations = {}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'code': 'code', 'message': 'message', 'details': 'details'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class ScoredVector(pinecone.core.openapi.shared.model_utils.ModelNormal):
 39class ScoredVector(ModelNormal):
 40    """NOTE: This class is auto generated by OpenAPI Generator.
 41    Ref: https://openapi-generator.tech
 42
 43    Do not edit the class manually.
 44
 45    Attributes:
 46      allowed_values (dict): The key is the tuple path to the attribute
 47          and the for var_name this is (var_name,). The value is a dict
 48          with a capitalized key describing the allowed value and an allowed
 49          value. These dicts store the allowed enum values.
 50      attribute_map (dict): The key is attribute name
 51          and the value is json key in definition.
 52      discriminator_value_class_map (dict): A dict to go from the discriminator
 53          variable value to the discriminator class name.
 54      validations (dict): The key is the tuple path to the attribute
 55          and the for var_name this is (var_name,). The value is a dict
 56          that stores validations for max_length, min_length, max_items,
 57          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 58          inclusive_minimum, and regex.
 59      additional_properties_type (tuple): A tuple of classes accepted
 60          as additional properties values.
 61    """
 62
 63    allowed_values = {}
 64
 65    validations = {
 66        ("id",): {
 67            "max_length": 512,
 68            "min_length": 1,
 69        },
 70    }
 71
 72    @cached_property
 73    def additional_properties_type():
 74        """
 75        This must be a method because a model may have properties that are
 76        of type self, this must run after the class is loaded
 77        """
 78        lazy_import()
 79        return (
 80            bool,
 81            dict,
 82            float,
 83            int,
 84            list,
 85            str,
 86            none_type,
 87        )  # noqa: E501
 88
 89    _nullable = False
 90
 91    @cached_property
 92    def openapi_types():
 93        """
 94        This must be a method because a model may have properties that are
 95        of type self, this must run after the class is loaded
 96
 97        Returns
 98            openapi_types (dict): The key is attribute name
 99                and the value is attribute type.
100        """
101        lazy_import()
102        return {
103            "id": (str,),  # noqa: E501
104            "score": (float,),  # noqa: E501
105            "values": ([float],),  # noqa: E501
106            "sparse_values": (SparseValues,),  # noqa: E501
107            "metadata": ({str: (bool, dict, float, int, list, str, none_type)},),  # noqa: E501
108        }
109
110    @cached_property
111    def discriminator():
112        return None
113
114    attribute_map = {
115        "id": "id",  # noqa: E501
116        "score": "score",  # noqa: E501
117        "values": "values",  # noqa: E501
118        "sparse_values": "sparseValues",  # noqa: E501
119        "metadata": "metadata",  # noqa: E501
120    }
121
122    read_only_vars = {}
123
124    _composed_schemas = {}
125
126    @classmethod
127    @convert_js_args_to_python_args
128    def _from_openapi_data(cls, id, *args, **kwargs):  # noqa: E501
129        """ScoredVector - a model defined in OpenAPI
130
131        Args:
132            id (str): This is the vector's unique id.
133
134        Keyword Args:
135            _check_type (bool): if True, values for parameters in openapi_types
136                                will be type checked and a TypeError will be
137                                raised if the wrong type is input.
138                                Defaults to True
139            _path_to_item (tuple/list): This is a list of keys or values to
140                                drill down to the model in received_data
141                                when deserializing a response
142            _spec_property_naming (bool): True if the variable names in the input data
143                                are serialized names, as specified in the OpenAPI document.
144                                False if the variable names in the input data
145                                are pythonic names, e.g. snake case (default)
146            _configuration (Configuration): the instance to use when
147                                deserializing a file_type parameter.
148                                If passed, type conversion is attempted
149                                If omitted no type conversion is done.
150            _visited_composed_classes (tuple): This stores a tuple of
151                                classes that we have traveled through so that
152                                if we see that class again we will not use its
153                                discriminator again.
154                                When traveling through a discriminator, the
155                                composed schema that is
156                                is traveled through is added to this set.
157                                For example if Animal has a discriminator
158                                petType and we pass in "Dog", and the class Dog
159                                allOf includes Animal, we move through Animal
160                                once using the discriminator, and pick Dog.
161                                Then in Dog, we will make an instance of the
162                                Animal class but this time we won't travel
163                                through its discriminator because we passed in
164                                _visited_composed_classes = (Animal,)
165            score (float): This is a measure of similarity between this vector and the query vector.  The higher the score, the more they are similar.. [optional]  # noqa: E501
166            values ([float]): This is the vector data, if it is requested.. [optional]  # noqa: E501
167            sparse_values (SparseValues): [optional]  # noqa: E501
168            metadata ({str: (bool, dict, float, int, list, str, none_type)}): This is the metadata, if it is requested.. [optional]  # noqa: E501
169        """
170
171        _check_type = kwargs.pop("_check_type", True)
172        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
173        _path_to_item = kwargs.pop("_path_to_item", ())
174        _configuration = kwargs.pop("_configuration", None)
175        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
176
177        self = super(OpenApiModel, cls).__new__(cls)
178
179        if args:
180            raise PineconeApiTypeError(
181                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
182                % (
183                    args,
184                    self.__class__.__name__,
185                ),
186                path_to_item=_path_to_item,
187                valid_classes=(self.__class__,),
188            )
189
190        self._data_store = {}
191        self._check_type = _check_type
192        self._spec_property_naming = _spec_property_naming
193        self._path_to_item = _path_to_item
194        self._configuration = _configuration
195        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
196
197        self.id = id
198        for var_name, var_value in kwargs.items():
199            if (
200                var_name not in self.attribute_map
201                and self._configuration is not None
202                and self._configuration.discard_unknown_keys
203                and self.additional_properties_type is None
204            ):
205                # discard variable.
206                continue
207            setattr(self, var_name, var_value)
208        return self
209
210    required_properties = set(
211        [
212            "_data_store",
213            "_check_type",
214            "_spec_property_naming",
215            "_path_to_item",
216            "_configuration",
217            "_visited_composed_classes",
218        ]
219    )
220
221    @convert_js_args_to_python_args
222    def __init__(self, id, *args, **kwargs):  # noqa: E501
223        """ScoredVector - a model defined in OpenAPI
224
225        Args:
226            id (str): This is the vector's unique id.
227
228        Keyword Args:
229            _check_type (bool): if True, values for parameters in openapi_types
230                                will be type checked and a TypeError will be
231                                raised if the wrong type is input.
232                                Defaults to True
233            _path_to_item (tuple/list): This is a list of keys or values to
234                                drill down to the model in received_data
235                                when deserializing a response
236            _spec_property_naming (bool): True if the variable names in the input data
237                                are serialized names, as specified in the OpenAPI document.
238                                False if the variable names in the input data
239                                are pythonic names, e.g. snake case (default)
240            _configuration (Configuration): the instance to use when
241                                deserializing a file_type parameter.
242                                If passed, type conversion is attempted
243                                If omitted no type conversion is done.
244            _visited_composed_classes (tuple): This stores a tuple of
245                                classes that we have traveled through so that
246                                if we see that class again we will not use its
247                                discriminator again.
248                                When traveling through a discriminator, the
249                                composed schema that is
250                                is traveled through is added to this set.
251                                For example if Animal has a discriminator
252                                petType and we pass in "Dog", and the class Dog
253                                allOf includes Animal, we move through Animal
254                                once using the discriminator, and pick Dog.
255                                Then in Dog, we will make an instance of the
256                                Animal class but this time we won't travel
257                                through its discriminator because we passed in
258                                _visited_composed_classes = (Animal,)
259            score (float): This is a measure of similarity between this vector and the query vector.  The higher the score, the more they are similar.. [optional]  # noqa: E501
260            values ([float]): This is the vector data, if it is requested.. [optional]  # noqa: E501
261            sparse_values (SparseValues): [optional]  # noqa: E501
262            metadata ({str: (bool, dict, float, int, list, str, none_type)}): This is the metadata, if it is requested.. [optional]  # noqa: E501
263        """
264
265        _check_type = kwargs.pop("_check_type", True)
266        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
267        _path_to_item = kwargs.pop("_path_to_item", ())
268        _configuration = kwargs.pop("_configuration", None)
269        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
270
271        if args:
272            raise PineconeApiTypeError(
273                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
274                % (
275                    args,
276                    self.__class__.__name__,
277                ),
278                path_to_item=_path_to_item,
279                valid_classes=(self.__class__,),
280            )
281
282        self._data_store = {}
283        self._check_type = _check_type
284        self._spec_property_naming = _spec_property_naming
285        self._path_to_item = _path_to_item
286        self._configuration = _configuration
287        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
288
289        self.id = id
290        for var_name, var_value in kwargs.items():
291            if (
292                var_name not in self.attribute_map
293                and self._configuration is not None
294                and self._configuration.discard_unknown_keys
295                and self.additional_properties_type is None
296            ):
297                # discard variable.
298                continue
299            setattr(self, var_name, var_value)
300            if var_name in self.read_only_vars:
301                raise PineconeApiAttributeError(
302                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
303                    f"class with read only attributes."
304                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
ScoredVector(id, *args, **kwargs)
221    @convert_js_args_to_python_args
222    def __init__(self, id, *args, **kwargs):  # noqa: E501
223        """ScoredVector - a model defined in OpenAPI
224
225        Args:
226            id (str): This is the vector's unique id.
227
228        Keyword Args:
229            _check_type (bool): if True, values for parameters in openapi_types
230                                will be type checked and a TypeError will be
231                                raised if the wrong type is input.
232                                Defaults to True
233            _path_to_item (tuple/list): This is a list of keys or values to
234                                drill down to the model in received_data
235                                when deserializing a response
236            _spec_property_naming (bool): True if the variable names in the input data
237                                are serialized names, as specified in the OpenAPI document.
238                                False if the variable names in the input data
239                                are pythonic names, e.g. snake case (default)
240            _configuration (Configuration): the instance to use when
241                                deserializing a file_type parameter.
242                                If passed, type conversion is attempted
243                                If omitted no type conversion is done.
244            _visited_composed_classes (tuple): This stores a tuple of
245                                classes that we have traveled through so that
246                                if we see that class again we will not use its
247                                discriminator again.
248                                When traveling through a discriminator, the
249                                composed schema that is
250                                is traveled through is added to this set.
251                                For example if Animal has a discriminator
252                                petType and we pass in "Dog", and the class Dog
253                                allOf includes Animal, we move through Animal
254                                once using the discriminator, and pick Dog.
255                                Then in Dog, we will make an instance of the
256                                Animal class but this time we won't travel
257                                through its discriminator because we passed in
258                                _visited_composed_classes = (Animal,)
259            score (float): This is a measure of similarity between this vector and the query vector.  The higher the score, the more they are similar.. [optional]  # noqa: E501
260            values ([float]): This is the vector data, if it is requested.. [optional]  # noqa: E501
261            sparse_values (SparseValues): [optional]  # noqa: E501
262            metadata ({str: (bool, dict, float, int, list, str, none_type)}): This is the metadata, if it is requested.. [optional]  # noqa: E501
263        """
264
265        _check_type = kwargs.pop("_check_type", True)
266        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
267        _path_to_item = kwargs.pop("_path_to_item", ())
268        _configuration = kwargs.pop("_configuration", None)
269        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
270
271        if args:
272            raise PineconeApiTypeError(
273                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
274                % (
275                    args,
276                    self.__class__.__name__,
277                ),
278                path_to_item=_path_to_item,
279                valid_classes=(self.__class__,),
280            )
281
282        self._data_store = {}
283        self._check_type = _check_type
284        self._spec_property_naming = _spec_property_naming
285        self._path_to_item = _path_to_item
286        self._configuration = _configuration
287        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
288
289        self.id = id
290        for var_name, var_value in kwargs.items():
291            if (
292                var_name not in self.attribute_map
293                and self._configuration is not None
294                and self._configuration.discard_unknown_keys
295                and self.additional_properties_type is None
296            ):
297                # discard variable.
298                continue
299            setattr(self, var_name, var_value)
300            if var_name in self.read_only_vars:
301                raise PineconeApiAttributeError(
302                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
303                    f"class with read only attributes."
304                )

ScoredVector - a model defined in OpenAPI

Arguments:
  • id (str): This is the vector's unique id.
Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) score (float): This is a measure of similarity between this vector and the query vector. The higher the score, the more they are similar.. [optional] # noqa: E501 values ([float]): This is the vector data, if it is requested.. [optional] # noqa: E501 sparse_values (SparseValues): [optional] # noqa: E501 metadata ({str: (bool, dict, float, int, list, str, none_type)}): This is the metadata, if it is requested.. [optional] # noqa: E501

allowed_values = {}
validations = {('id',): {'max_length': 512, 'min_length': 1}}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'id': 'id', 'score': 'score', 'values': 'values', 'sparse_values': 'sparseValues', 'metadata': 'metadata'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
id
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class SingleQueryResults(pinecone.core.openapi.shared.model_utils.ModelNormal):
 39class SingleQueryResults(ModelNormal):
 40    """NOTE: This class is auto generated by OpenAPI Generator.
 41    Ref: https://openapi-generator.tech
 42
 43    Do not edit the class manually.
 44
 45    Attributes:
 46      allowed_values (dict): The key is the tuple path to the attribute
 47          and the for var_name this is (var_name,). The value is a dict
 48          with a capitalized key describing the allowed value and an allowed
 49          value. These dicts store the allowed enum values.
 50      attribute_map (dict): The key is attribute name
 51          and the value is json key in definition.
 52      discriminator_value_class_map (dict): A dict to go from the discriminator
 53          variable value to the discriminator class name.
 54      validations (dict): The key is the tuple path to the attribute
 55          and the for var_name this is (var_name,). The value is a dict
 56          that stores validations for max_length, min_length, max_items,
 57          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 58          inclusive_minimum, and regex.
 59      additional_properties_type (tuple): A tuple of classes accepted
 60          as additional properties values.
 61    """
 62
 63    allowed_values = {}
 64
 65    validations = {}
 66
 67    @cached_property
 68    def additional_properties_type():
 69        """
 70        This must be a method because a model may have properties that are
 71        of type self, this must run after the class is loaded
 72        """
 73        lazy_import()
 74        return (
 75            bool,
 76            dict,
 77            float,
 78            int,
 79            list,
 80            str,
 81            none_type,
 82        )  # noqa: E501
 83
 84    _nullable = False
 85
 86    @cached_property
 87    def openapi_types():
 88        """
 89        This must be a method because a model may have properties that are
 90        of type self, this must run after the class is loaded
 91
 92        Returns
 93            openapi_types (dict): The key is attribute name
 94                and the value is attribute type.
 95        """
 96        lazy_import()
 97        return {
 98            "matches": ([ScoredVector],),  # noqa: E501
 99            "namespace": (str,),  # noqa: E501
100        }
101
102    @cached_property
103    def discriminator():
104        return None
105
106    attribute_map = {
107        "matches": "matches",  # noqa: E501
108        "namespace": "namespace",  # noqa: E501
109    }
110
111    read_only_vars = {}
112
113    _composed_schemas = {}
114
115    @classmethod
116    @convert_js_args_to_python_args
117    def _from_openapi_data(cls, *args, **kwargs):  # noqa: E501
118        """SingleQueryResults - a model defined in OpenAPI
119
120        Keyword Args:
121            _check_type (bool): if True, values for parameters in openapi_types
122                                will be type checked and a TypeError will be
123                                raised if the wrong type is input.
124                                Defaults to True
125            _path_to_item (tuple/list): This is a list of keys or values to
126                                drill down to the model in received_data
127                                when deserializing a response
128            _spec_property_naming (bool): True if the variable names in the input data
129                                are serialized names, as specified in the OpenAPI document.
130                                False if the variable names in the input data
131                                are pythonic names, e.g. snake case (default)
132            _configuration (Configuration): the instance to use when
133                                deserializing a file_type parameter.
134                                If passed, type conversion is attempted
135                                If omitted no type conversion is done.
136            _visited_composed_classes (tuple): This stores a tuple of
137                                classes that we have traveled through so that
138                                if we see that class again we will not use its
139                                discriminator again.
140                                When traveling through a discriminator, the
141                                composed schema that is
142                                is traveled through is added to this set.
143                                For example if Animal has a discriminator
144                                petType and we pass in "Dog", and the class Dog
145                                allOf includes Animal, we move through Animal
146                                once using the discriminator, and pick Dog.
147                                Then in Dog, we will make an instance of the
148                                Animal class but this time we won't travel
149                                through its discriminator because we passed in
150                                _visited_composed_classes = (Animal,)
151            matches ([ScoredVector]): The matches for the vectors.. [optional]  # noqa: E501
152            namespace (str): The namespace for the vectors.. [optional]  # noqa: E501
153        """
154
155        _check_type = kwargs.pop("_check_type", True)
156        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
157        _path_to_item = kwargs.pop("_path_to_item", ())
158        _configuration = kwargs.pop("_configuration", None)
159        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
160
161        self = super(OpenApiModel, cls).__new__(cls)
162
163        if args:
164            raise PineconeApiTypeError(
165                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
166                % (
167                    args,
168                    self.__class__.__name__,
169                ),
170                path_to_item=_path_to_item,
171                valid_classes=(self.__class__,),
172            )
173
174        self._data_store = {}
175        self._check_type = _check_type
176        self._spec_property_naming = _spec_property_naming
177        self._path_to_item = _path_to_item
178        self._configuration = _configuration
179        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
180
181        for var_name, var_value in kwargs.items():
182            if (
183                var_name not in self.attribute_map
184                and self._configuration is not None
185                and self._configuration.discard_unknown_keys
186                and self.additional_properties_type is None
187            ):
188                # discard variable.
189                continue
190            setattr(self, var_name, var_value)
191        return self
192
193    required_properties = set(
194        [
195            "_data_store",
196            "_check_type",
197            "_spec_property_naming",
198            "_path_to_item",
199            "_configuration",
200            "_visited_composed_classes",
201        ]
202    )
203
204    @convert_js_args_to_python_args
205    def __init__(self, *args, **kwargs):  # noqa: E501
206        """SingleQueryResults - a model defined in OpenAPI
207
208        Keyword Args:
209            _check_type (bool): if True, values for parameters in openapi_types
210                                will be type checked and a TypeError will be
211                                raised if the wrong type is input.
212                                Defaults to True
213            _path_to_item (tuple/list): This is a list of keys or values to
214                                drill down to the model in received_data
215                                when deserializing a response
216            _spec_property_naming (bool): True if the variable names in the input data
217                                are serialized names, as specified in the OpenAPI document.
218                                False if the variable names in the input data
219                                are pythonic names, e.g. snake case (default)
220            _configuration (Configuration): the instance to use when
221                                deserializing a file_type parameter.
222                                If passed, type conversion is attempted
223                                If omitted no type conversion is done.
224            _visited_composed_classes (tuple): This stores a tuple of
225                                classes that we have traveled through so that
226                                if we see that class again we will not use its
227                                discriminator again.
228                                When traveling through a discriminator, the
229                                composed schema that is
230                                is traveled through is added to this set.
231                                For example if Animal has a discriminator
232                                petType and we pass in "Dog", and the class Dog
233                                allOf includes Animal, we move through Animal
234                                once using the discriminator, and pick Dog.
235                                Then in Dog, we will make an instance of the
236                                Animal class but this time we won't travel
237                                through its discriminator because we passed in
238                                _visited_composed_classes = (Animal,)
239            matches ([ScoredVector]): The matches for the vectors.. [optional]  # noqa: E501
240            namespace (str): The namespace for the vectors.. [optional]  # noqa: E501
241        """
242
243        _check_type = kwargs.pop("_check_type", True)
244        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
245        _path_to_item = kwargs.pop("_path_to_item", ())
246        _configuration = kwargs.pop("_configuration", None)
247        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
248
249        if args:
250            raise PineconeApiTypeError(
251                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
252                % (
253                    args,
254                    self.__class__.__name__,
255                ),
256                path_to_item=_path_to_item,
257                valid_classes=(self.__class__,),
258            )
259
260        self._data_store = {}
261        self._check_type = _check_type
262        self._spec_property_naming = _spec_property_naming
263        self._path_to_item = _path_to_item
264        self._configuration = _configuration
265        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
266
267        for var_name, var_value in kwargs.items():
268            if (
269                var_name not in self.attribute_map
270                and self._configuration is not None
271                and self._configuration.discard_unknown_keys
272                and self.additional_properties_type is None
273            ):
274                # discard variable.
275                continue
276            setattr(self, var_name, var_value)
277            if var_name in self.read_only_vars:
278                raise PineconeApiAttributeError(
279                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
280                    f"class with read only attributes."
281                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
SingleQueryResults(*args, **kwargs)
204    @convert_js_args_to_python_args
205    def __init__(self, *args, **kwargs):  # noqa: E501
206        """SingleQueryResults - a model defined in OpenAPI
207
208        Keyword Args:
209            _check_type (bool): if True, values for parameters in openapi_types
210                                will be type checked and a TypeError will be
211                                raised if the wrong type is input.
212                                Defaults to True
213            _path_to_item (tuple/list): This is a list of keys or values to
214                                drill down to the model in received_data
215                                when deserializing a response
216            _spec_property_naming (bool): True if the variable names in the input data
217                                are serialized names, as specified in the OpenAPI document.
218                                False if the variable names in the input data
219                                are pythonic names, e.g. snake case (default)
220            _configuration (Configuration): the instance to use when
221                                deserializing a file_type parameter.
222                                If passed, type conversion is attempted
223                                If omitted no type conversion is done.
224            _visited_composed_classes (tuple): This stores a tuple of
225                                classes that we have traveled through so that
226                                if we see that class again we will not use its
227                                discriminator again.
228                                When traveling through a discriminator, the
229                                composed schema that is
230                                is traveled through is added to this set.
231                                For example if Animal has a discriminator
232                                petType and we pass in "Dog", and the class Dog
233                                allOf includes Animal, we move through Animal
234                                once using the discriminator, and pick Dog.
235                                Then in Dog, we will make an instance of the
236                                Animal class but this time we won't travel
237                                through its discriminator because we passed in
238                                _visited_composed_classes = (Animal,)
239            matches ([ScoredVector]): The matches for the vectors.. [optional]  # noqa: E501
240            namespace (str): The namespace for the vectors.. [optional]  # noqa: E501
241        """
242
243        _check_type = kwargs.pop("_check_type", True)
244        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
245        _path_to_item = kwargs.pop("_path_to_item", ())
246        _configuration = kwargs.pop("_configuration", None)
247        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
248
249        if args:
250            raise PineconeApiTypeError(
251                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
252                % (
253                    args,
254                    self.__class__.__name__,
255                ),
256                path_to_item=_path_to_item,
257                valid_classes=(self.__class__,),
258            )
259
260        self._data_store = {}
261        self._check_type = _check_type
262        self._spec_property_naming = _spec_property_naming
263        self._path_to_item = _path_to_item
264        self._configuration = _configuration
265        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
266
267        for var_name, var_value in kwargs.items():
268            if (
269                var_name not in self.attribute_map
270                and self._configuration is not None
271                and self._configuration.discard_unknown_keys
272                and self.additional_properties_type is None
273            ):
274                # discard variable.
275                continue
276            setattr(self, var_name, var_value)
277            if var_name in self.read_only_vars:
278                raise PineconeApiAttributeError(
279                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
280                    f"class with read only attributes."
281                )

SingleQueryResults - a model defined in OpenAPI

Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) matches ([ScoredVector]): The matches for the vectors.. [optional] # noqa: E501 namespace (str): The namespace for the vectors.. [optional] # noqa: E501

allowed_values = {}
validations = {}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'matches': 'matches', 'namespace': 'namespace'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class DescribeIndexStatsResponse(pinecone.core.openapi.shared.model_utils.ModelNormal):
 39class DescribeIndexStatsResponse(ModelNormal):
 40    """NOTE: This class is auto generated by OpenAPI Generator.
 41    Ref: https://openapi-generator.tech
 42
 43    Do not edit the class manually.
 44
 45    Attributes:
 46      allowed_values (dict): The key is the tuple path to the attribute
 47          and the for var_name this is (var_name,). The value is a dict
 48          with a capitalized key describing the allowed value and an allowed
 49          value. These dicts store the allowed enum values.
 50      attribute_map (dict): The key is attribute name
 51          and the value is json key in definition.
 52      discriminator_value_class_map (dict): A dict to go from the discriminator
 53          variable value to the discriminator class name.
 54      validations (dict): The key is the tuple path to the attribute
 55          and the for var_name this is (var_name,). The value is a dict
 56          that stores validations for max_length, min_length, max_items,
 57          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 58          inclusive_minimum, and regex.
 59      additional_properties_type (tuple): A tuple of classes accepted
 60          as additional properties values.
 61    """
 62
 63    allowed_values = {}
 64
 65    validations = {}
 66
 67    @cached_property
 68    def additional_properties_type():
 69        """
 70        This must be a method because a model may have properties that are
 71        of type self, this must run after the class is loaded
 72        """
 73        lazy_import()
 74        return (
 75            bool,
 76            dict,
 77            float,
 78            int,
 79            list,
 80            str,
 81            none_type,
 82        )  # noqa: E501
 83
 84    _nullable = False
 85
 86    @cached_property
 87    def openapi_types():
 88        """
 89        This must be a method because a model may have properties that are
 90        of type self, this must run after the class is loaded
 91
 92        Returns
 93            openapi_types (dict): The key is attribute name
 94                and the value is attribute type.
 95        """
 96        lazy_import()
 97        return {
 98            "namespaces": ({str: (NamespaceSummary,)},),  # noqa: E501
 99            "dimension": (int,),  # noqa: E501
100            "index_fullness": (float,),  # noqa: E501
101            "total_vector_count": (int,),  # noqa: E501
102        }
103
104    @cached_property
105    def discriminator():
106        return None
107
108    attribute_map = {
109        "namespaces": "namespaces",  # noqa: E501
110        "dimension": "dimension",  # noqa: E501
111        "index_fullness": "indexFullness",  # noqa: E501
112        "total_vector_count": "totalVectorCount",  # noqa: E501
113    }
114
115    read_only_vars = {}
116
117    _composed_schemas = {}
118
119    @classmethod
120    @convert_js_args_to_python_args
121    def _from_openapi_data(cls, *args, **kwargs):  # noqa: E501
122        """DescribeIndexStatsResponse - a model defined in OpenAPI
123
124        Keyword Args:
125            _check_type (bool): if True, values for parameters in openapi_types
126                                will be type checked and a TypeError will be
127                                raised if the wrong type is input.
128                                Defaults to True
129            _path_to_item (tuple/list): This is a list of keys or values to
130                                drill down to the model in received_data
131                                when deserializing a response
132            _spec_property_naming (bool): True if the variable names in the input data
133                                are serialized names, as specified in the OpenAPI document.
134                                False if the variable names in the input data
135                                are pythonic names, e.g. snake case (default)
136            _configuration (Configuration): the instance to use when
137                                deserializing a file_type parameter.
138                                If passed, type conversion is attempted
139                                If omitted no type conversion is done.
140            _visited_composed_classes (tuple): This stores a tuple of
141                                classes that we have traveled through so that
142                                if we see that class again we will not use its
143                                discriminator again.
144                                When traveling through a discriminator, the
145                                composed schema that is
146                                is traveled through is added to this set.
147                                For example if Animal has a discriminator
148                                petType and we pass in "Dog", and the class Dog
149                                allOf includes Animal, we move through Animal
150                                once using the discriminator, and pick Dog.
151                                Then in Dog, we will make an instance of the
152                                Animal class but this time we won't travel
153                                through its discriminator because we passed in
154                                _visited_composed_classes = (Animal,)
155            namespaces ({str: (NamespaceSummary,)}): A mapping for each namespace in the index from the namespace name to a summary of its contents. If a metadata filter expression is present, the summary will reflect only vectors matching that expression.. [optional]  # noqa: E501
156            dimension (int): The dimension of the indexed vectors.. [optional]  # noqa: E501
157            index_fullness (float): The fullness of the index, regardless of whether a metadata filter expression was passed. The granularity of this metric is 10%.  Serverless indexes scale automatically as needed, so index fullness  is relevant only for pod-based indexes.  The index fullness result may be inaccurate during pod resizing; to get the status of a pod resizing process, use [`describe_index`](https://docs.pinecone.io/reference/api/control-plane/describe_index).            . [optional]  # noqa: E501
158            total_vector_count (int): The total number of vectors in the index, regardless of whether a metadata filter expression was passed. [optional]  # noqa: E501
159        """
160
161        _check_type = kwargs.pop("_check_type", True)
162        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
163        _path_to_item = kwargs.pop("_path_to_item", ())
164        _configuration = kwargs.pop("_configuration", None)
165        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
166
167        self = super(OpenApiModel, cls).__new__(cls)
168
169        if args:
170            raise PineconeApiTypeError(
171                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
172                % (
173                    args,
174                    self.__class__.__name__,
175                ),
176                path_to_item=_path_to_item,
177                valid_classes=(self.__class__,),
178            )
179
180        self._data_store = {}
181        self._check_type = _check_type
182        self._spec_property_naming = _spec_property_naming
183        self._path_to_item = _path_to_item
184        self._configuration = _configuration
185        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
186
187        for var_name, var_value in kwargs.items():
188            if (
189                var_name not in self.attribute_map
190                and self._configuration is not None
191                and self._configuration.discard_unknown_keys
192                and self.additional_properties_type is None
193            ):
194                # discard variable.
195                continue
196            setattr(self, var_name, var_value)
197        return self
198
199    required_properties = set(
200        [
201            "_data_store",
202            "_check_type",
203            "_spec_property_naming",
204            "_path_to_item",
205            "_configuration",
206            "_visited_composed_classes",
207        ]
208    )
209
210    @convert_js_args_to_python_args
211    def __init__(self, *args, **kwargs):  # noqa: E501
212        """DescribeIndexStatsResponse - a model defined in OpenAPI
213
214        Keyword Args:
215            _check_type (bool): if True, values for parameters in openapi_types
216                                will be type checked and a TypeError will be
217                                raised if the wrong type is input.
218                                Defaults to True
219            _path_to_item (tuple/list): This is a list of keys or values to
220                                drill down to the model in received_data
221                                when deserializing a response
222            _spec_property_naming (bool): True if the variable names in the input data
223                                are serialized names, as specified in the OpenAPI document.
224                                False if the variable names in the input data
225                                are pythonic names, e.g. snake case (default)
226            _configuration (Configuration): the instance to use when
227                                deserializing a file_type parameter.
228                                If passed, type conversion is attempted
229                                If omitted no type conversion is done.
230            _visited_composed_classes (tuple): This stores a tuple of
231                                classes that we have traveled through so that
232                                if we see that class again we will not use its
233                                discriminator again.
234                                When traveling through a discriminator, the
235                                composed schema that is
236                                is traveled through is added to this set.
237                                For example if Animal has a discriminator
238                                petType and we pass in "Dog", and the class Dog
239                                allOf includes Animal, we move through Animal
240                                once using the discriminator, and pick Dog.
241                                Then in Dog, we will make an instance of the
242                                Animal class but this time we won't travel
243                                through its discriminator because we passed in
244                                _visited_composed_classes = (Animal,)
245            namespaces ({str: (NamespaceSummary,)}): A mapping for each namespace in the index from the namespace name to a summary of its contents. If a metadata filter expression is present, the summary will reflect only vectors matching that expression.. [optional]  # noqa: E501
246            dimension (int): The dimension of the indexed vectors.. [optional]  # noqa: E501
247            index_fullness (float): The fullness of the index, regardless of whether a metadata filter expression was passed. The granularity of this metric is 10%.  Serverless indexes scale automatically as needed, so index fullness  is relevant only for pod-based indexes.  The index fullness result may be inaccurate during pod resizing; to get the status of a pod resizing process, use [`describe_index`](https://docs.pinecone.io/reference/api/control-plane/describe_index).            . [optional]  # noqa: E501
248            total_vector_count (int): The total number of vectors in the index, regardless of whether a metadata filter expression was passed. [optional]  # noqa: E501
249        """
250
251        _check_type = kwargs.pop("_check_type", True)
252        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
253        _path_to_item = kwargs.pop("_path_to_item", ())
254        _configuration = kwargs.pop("_configuration", None)
255        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
256
257        if args:
258            raise PineconeApiTypeError(
259                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
260                % (
261                    args,
262                    self.__class__.__name__,
263                ),
264                path_to_item=_path_to_item,
265                valid_classes=(self.__class__,),
266            )
267
268        self._data_store = {}
269        self._check_type = _check_type
270        self._spec_property_naming = _spec_property_naming
271        self._path_to_item = _path_to_item
272        self._configuration = _configuration
273        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
274
275        for var_name, var_value in kwargs.items():
276            if (
277                var_name not in self.attribute_map
278                and self._configuration is not None
279                and self._configuration.discard_unknown_keys
280                and self.additional_properties_type is None
281            ):
282                # discard variable.
283                continue
284            setattr(self, var_name, var_value)
285            if var_name in self.read_only_vars:
286                raise PineconeApiAttributeError(
287                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
288                    f"class with read only attributes."
289                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
DescribeIndexStatsResponse(*args, **kwargs)
210    @convert_js_args_to_python_args
211    def __init__(self, *args, **kwargs):  # noqa: E501
212        """DescribeIndexStatsResponse - a model defined in OpenAPI
213
214        Keyword Args:
215            _check_type (bool): if True, values for parameters in openapi_types
216                                will be type checked and a TypeError will be
217                                raised if the wrong type is input.
218                                Defaults to True
219            _path_to_item (tuple/list): This is a list of keys or values to
220                                drill down to the model in received_data
221                                when deserializing a response
222            _spec_property_naming (bool): True if the variable names in the input data
223                                are serialized names, as specified in the OpenAPI document.
224                                False if the variable names in the input data
225                                are pythonic names, e.g. snake case (default)
226            _configuration (Configuration): the instance to use when
227                                deserializing a file_type parameter.
228                                If passed, type conversion is attempted
229                                If omitted no type conversion is done.
230            _visited_composed_classes (tuple): This stores a tuple of
231                                classes that we have traveled through so that
232                                if we see that class again we will not use its
233                                discriminator again.
234                                When traveling through a discriminator, the
235                                composed schema that is
236                                is traveled through is added to this set.
237                                For example if Animal has a discriminator
238                                petType and we pass in "Dog", and the class Dog
239                                allOf includes Animal, we move through Animal
240                                once using the discriminator, and pick Dog.
241                                Then in Dog, we will make an instance of the
242                                Animal class but this time we won't travel
243                                through its discriminator because we passed in
244                                _visited_composed_classes = (Animal,)
245            namespaces ({str: (NamespaceSummary,)}): A mapping for each namespace in the index from the namespace name to a summary of its contents. If a metadata filter expression is present, the summary will reflect only vectors matching that expression.. [optional]  # noqa: E501
246            dimension (int): The dimension of the indexed vectors.. [optional]  # noqa: E501
247            index_fullness (float): The fullness of the index, regardless of whether a metadata filter expression was passed. The granularity of this metric is 10%.  Serverless indexes scale automatically as needed, so index fullness  is relevant only for pod-based indexes.  The index fullness result may be inaccurate during pod resizing; to get the status of a pod resizing process, use [`describe_index`](https://docs.pinecone.io/reference/api/control-plane/describe_index).            . [optional]  # noqa: E501
248            total_vector_count (int): The total number of vectors in the index, regardless of whether a metadata filter expression was passed. [optional]  # noqa: E501
249        """
250
251        _check_type = kwargs.pop("_check_type", True)
252        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
253        _path_to_item = kwargs.pop("_path_to_item", ())
254        _configuration = kwargs.pop("_configuration", None)
255        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
256
257        if args:
258            raise PineconeApiTypeError(
259                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
260                % (
261                    args,
262                    self.__class__.__name__,
263                ),
264                path_to_item=_path_to_item,
265                valid_classes=(self.__class__,),
266            )
267
268        self._data_store = {}
269        self._check_type = _check_type
270        self._spec_property_naming = _spec_property_naming
271        self._path_to_item = _path_to_item
272        self._configuration = _configuration
273        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
274
275        for var_name, var_value in kwargs.items():
276            if (
277                var_name not in self.attribute_map
278                and self._configuration is not None
279                and self._configuration.discard_unknown_keys
280                and self.additional_properties_type is None
281            ):
282                # discard variable.
283                continue
284            setattr(self, var_name, var_value)
285            if var_name in self.read_only_vars:
286                raise PineconeApiAttributeError(
287                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
288                    f"class with read only attributes."
289                )

DescribeIndexStatsResponse - a model defined in OpenAPI

Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) namespaces ({str: (NamespaceSummary,)}): A mapping for each namespace in the index from the namespace name to a summary of its contents. If a metadata filter expression is present, the summary will reflect only vectors matching that expression.. [optional] # noqa: E501 dimension (int): The dimension of the indexed vectors.. [optional] # noqa: E501 index_fullness (float): The fullness of the index, regardless of whether a metadata filter expression was passed. The granularity of this metric is 10%. Serverless indexes scale automatically as needed, so index fullness is relevant only for pod-based indexes. The index fullness result may be inaccurate during pod resizing; to get the status of a pod resizing process, use describe_index. . [optional] # noqa: E501 total_vector_count (int): The total number of vectors in the index, regardless of whether a metadata filter expression was passed. [optional] # noqa: E501

allowed_values = {}
validations = {}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'namespaces': 'namespaces', 'dimension': 'dimension', 'index_fullness': 'indexFullness', 'total_vector_count': 'totalVectorCount'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class UpsertRequest(pinecone.core.openapi.shared.model_utils.ModelNormal):
 39class UpsertRequest(ModelNormal):
 40    """NOTE: This class is auto generated by OpenAPI Generator.
 41    Ref: https://openapi-generator.tech
 42
 43    Do not edit the class manually.
 44
 45    Attributes:
 46      allowed_values (dict): The key is the tuple path to the attribute
 47          and the for var_name this is (var_name,). The value is a dict
 48          with a capitalized key describing the allowed value and an allowed
 49          value. These dicts store the allowed enum values.
 50      attribute_map (dict): The key is attribute name
 51          and the value is json key in definition.
 52      discriminator_value_class_map (dict): A dict to go from the discriminator
 53          variable value to the discriminator class name.
 54      validations (dict): The key is the tuple path to the attribute
 55          and the for var_name this is (var_name,). The value is a dict
 56          that stores validations for max_length, min_length, max_items,
 57          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 58          inclusive_minimum, and regex.
 59      additional_properties_type (tuple): A tuple of classes accepted
 60          as additional properties values.
 61    """
 62
 63    allowed_values = {}
 64
 65    validations = {
 66        ("vectors",): {},
 67    }
 68
 69    @cached_property
 70    def additional_properties_type():
 71        """
 72        This must be a method because a model may have properties that are
 73        of type self, this must run after the class is loaded
 74        """
 75        lazy_import()
 76        return (
 77            bool,
 78            dict,
 79            float,
 80            int,
 81            list,
 82            str,
 83            none_type,
 84        )  # noqa: E501
 85
 86    _nullable = False
 87
 88    @cached_property
 89    def openapi_types():
 90        """
 91        This must be a method because a model may have properties that are
 92        of type self, this must run after the class is loaded
 93
 94        Returns
 95            openapi_types (dict): The key is attribute name
 96                and the value is attribute type.
 97        """
 98        lazy_import()
 99        return {
100            "vectors": ([Vector],),  # noqa: E501
101            "namespace": (str,),  # noqa: E501
102        }
103
104    @cached_property
105    def discriminator():
106        return None
107
108    attribute_map = {
109        "vectors": "vectors",  # noqa: E501
110        "namespace": "namespace",  # noqa: E501
111    }
112
113    read_only_vars = {}
114
115    _composed_schemas = {}
116
117    @classmethod
118    @convert_js_args_to_python_args
119    def _from_openapi_data(cls, vectors, *args, **kwargs):  # noqa: E501
120        """UpsertRequest - a model defined in OpenAPI
121
122        Args:
123            vectors ([Vector]): An array containing the vectors to upsert. Recommended batch limit is 100 vectors.
124
125        Keyword Args:
126            _check_type (bool): if True, values for parameters in openapi_types
127                                will be type checked and a TypeError will be
128                                raised if the wrong type is input.
129                                Defaults to True
130            _path_to_item (tuple/list): This is a list of keys or values to
131                                drill down to the model in received_data
132                                when deserializing a response
133            _spec_property_naming (bool): True if the variable names in the input data
134                                are serialized names, as specified in the OpenAPI document.
135                                False if the variable names in the input data
136                                are pythonic names, e.g. snake case (default)
137            _configuration (Configuration): the instance to use when
138                                deserializing a file_type parameter.
139                                If passed, type conversion is attempted
140                                If omitted no type conversion is done.
141            _visited_composed_classes (tuple): This stores a tuple of
142                                classes that we have traveled through so that
143                                if we see that class again we will not use its
144                                discriminator again.
145                                When traveling through a discriminator, the
146                                composed schema that is
147                                is traveled through is added to this set.
148                                For example if Animal has a discriminator
149                                petType and we pass in "Dog", and the class Dog
150                                allOf includes Animal, we move through Animal
151                                once using the discriminator, and pick Dog.
152                                Then in Dog, we will make an instance of the
153                                Animal class but this time we won't travel
154                                through its discriminator because we passed in
155                                _visited_composed_classes = (Animal,)
156            namespace (str): The namespace where you upsert vectors.. [optional]  # noqa: E501
157        """
158
159        _check_type = kwargs.pop("_check_type", True)
160        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
161        _path_to_item = kwargs.pop("_path_to_item", ())
162        _configuration = kwargs.pop("_configuration", None)
163        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
164
165        self = super(OpenApiModel, cls).__new__(cls)
166
167        if args:
168            raise PineconeApiTypeError(
169                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
170                % (
171                    args,
172                    self.__class__.__name__,
173                ),
174                path_to_item=_path_to_item,
175                valid_classes=(self.__class__,),
176            )
177
178        self._data_store = {}
179        self._check_type = _check_type
180        self._spec_property_naming = _spec_property_naming
181        self._path_to_item = _path_to_item
182        self._configuration = _configuration
183        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
184
185        self.vectors = vectors
186        for var_name, var_value in kwargs.items():
187            if (
188                var_name not in self.attribute_map
189                and self._configuration is not None
190                and self._configuration.discard_unknown_keys
191                and self.additional_properties_type is None
192            ):
193                # discard variable.
194                continue
195            setattr(self, var_name, var_value)
196        return self
197
198    required_properties = set(
199        [
200            "_data_store",
201            "_check_type",
202            "_spec_property_naming",
203            "_path_to_item",
204            "_configuration",
205            "_visited_composed_classes",
206        ]
207    )
208
209    @convert_js_args_to_python_args
210    def __init__(self, vectors, *args, **kwargs):  # noqa: E501
211        """UpsertRequest - a model defined in OpenAPI
212
213        Args:
214            vectors ([Vector]): An array containing the vectors to upsert. Recommended batch limit is 100 vectors.
215
216        Keyword Args:
217            _check_type (bool): if True, values for parameters in openapi_types
218                                will be type checked and a TypeError will be
219                                raised if the wrong type is input.
220                                Defaults to True
221            _path_to_item (tuple/list): This is a list of keys or values to
222                                drill down to the model in received_data
223                                when deserializing a response
224            _spec_property_naming (bool): True if the variable names in the input data
225                                are serialized names, as specified in the OpenAPI document.
226                                False if the variable names in the input data
227                                are pythonic names, e.g. snake case (default)
228            _configuration (Configuration): the instance to use when
229                                deserializing a file_type parameter.
230                                If passed, type conversion is attempted
231                                If omitted no type conversion is done.
232            _visited_composed_classes (tuple): This stores a tuple of
233                                classes that we have traveled through so that
234                                if we see that class again we will not use its
235                                discriminator again.
236                                When traveling through a discriminator, the
237                                composed schema that is
238                                is traveled through is added to this set.
239                                For example if Animal has a discriminator
240                                petType and we pass in "Dog", and the class Dog
241                                allOf includes Animal, we move through Animal
242                                once using the discriminator, and pick Dog.
243                                Then in Dog, we will make an instance of the
244                                Animal class but this time we won't travel
245                                through its discriminator because we passed in
246                                _visited_composed_classes = (Animal,)
247            namespace (str): The namespace where you upsert vectors.. [optional]  # noqa: E501
248        """
249
250        _check_type = kwargs.pop("_check_type", True)
251        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
252        _path_to_item = kwargs.pop("_path_to_item", ())
253        _configuration = kwargs.pop("_configuration", None)
254        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
255
256        if args:
257            raise PineconeApiTypeError(
258                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
259                % (
260                    args,
261                    self.__class__.__name__,
262                ),
263                path_to_item=_path_to_item,
264                valid_classes=(self.__class__,),
265            )
266
267        self._data_store = {}
268        self._check_type = _check_type
269        self._spec_property_naming = _spec_property_naming
270        self._path_to_item = _path_to_item
271        self._configuration = _configuration
272        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
273
274        self.vectors = vectors
275        for var_name, var_value in kwargs.items():
276            if (
277                var_name not in self.attribute_map
278                and self._configuration is not None
279                and self._configuration.discard_unknown_keys
280                and self.additional_properties_type is None
281            ):
282                # discard variable.
283                continue
284            setattr(self, var_name, var_value)
285            if var_name in self.read_only_vars:
286                raise PineconeApiAttributeError(
287                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
288                    f"class with read only attributes."
289                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
UpsertRequest(vectors, *args, **kwargs)
209    @convert_js_args_to_python_args
210    def __init__(self, vectors, *args, **kwargs):  # noqa: E501
211        """UpsertRequest - a model defined in OpenAPI
212
213        Args:
214            vectors ([Vector]): An array containing the vectors to upsert. Recommended batch limit is 100 vectors.
215
216        Keyword Args:
217            _check_type (bool): if True, values for parameters in openapi_types
218                                will be type checked and a TypeError will be
219                                raised if the wrong type is input.
220                                Defaults to True
221            _path_to_item (tuple/list): This is a list of keys or values to
222                                drill down to the model in received_data
223                                when deserializing a response
224            _spec_property_naming (bool): True if the variable names in the input data
225                                are serialized names, as specified in the OpenAPI document.
226                                False if the variable names in the input data
227                                are pythonic names, e.g. snake case (default)
228            _configuration (Configuration): the instance to use when
229                                deserializing a file_type parameter.
230                                If passed, type conversion is attempted
231                                If omitted no type conversion is done.
232            _visited_composed_classes (tuple): This stores a tuple of
233                                classes that we have traveled through so that
234                                if we see that class again we will not use its
235                                discriminator again.
236                                When traveling through a discriminator, the
237                                composed schema that is
238                                is traveled through is added to this set.
239                                For example if Animal has a discriminator
240                                petType and we pass in "Dog", and the class Dog
241                                allOf includes Animal, we move through Animal
242                                once using the discriminator, and pick Dog.
243                                Then in Dog, we will make an instance of the
244                                Animal class but this time we won't travel
245                                through its discriminator because we passed in
246                                _visited_composed_classes = (Animal,)
247            namespace (str): The namespace where you upsert vectors.. [optional]  # noqa: E501
248        """
249
250        _check_type = kwargs.pop("_check_type", True)
251        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
252        _path_to_item = kwargs.pop("_path_to_item", ())
253        _configuration = kwargs.pop("_configuration", None)
254        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
255
256        if args:
257            raise PineconeApiTypeError(
258                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
259                % (
260                    args,
261                    self.__class__.__name__,
262                ),
263                path_to_item=_path_to_item,
264                valid_classes=(self.__class__,),
265            )
266
267        self._data_store = {}
268        self._check_type = _check_type
269        self._spec_property_naming = _spec_property_naming
270        self._path_to_item = _path_to_item
271        self._configuration = _configuration
272        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
273
274        self.vectors = vectors
275        for var_name, var_value in kwargs.items():
276            if (
277                var_name not in self.attribute_map
278                and self._configuration is not None
279                and self._configuration.discard_unknown_keys
280                and self.additional_properties_type is None
281            ):
282                # discard variable.
283                continue
284            setattr(self, var_name, var_value)
285            if var_name in self.read_only_vars:
286                raise PineconeApiAttributeError(
287                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
288                    f"class with read only attributes."
289                )

UpsertRequest - a model defined in OpenAPI

Arguments:
  • vectors ([Vector]): An array containing the vectors to upsert. Recommended batch limit is 100 vectors.
Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) namespace (str): The namespace where you upsert vectors.. [optional] # noqa: E501

allowed_values = {}
validations = {('vectors',): {}}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'vectors': 'vectors', 'namespace': 'namespace'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
vectors
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class UpsertResponse(pinecone.core.openapi.shared.model_utils.ModelNormal):
 33class UpsertResponse(ModelNormal):
 34    """NOTE: This class is auto generated by OpenAPI Generator.
 35    Ref: https://openapi-generator.tech
 36
 37    Do not edit the class manually.
 38
 39    Attributes:
 40      allowed_values (dict): The key is the tuple path to the attribute
 41          and the for var_name this is (var_name,). The value is a dict
 42          with a capitalized key describing the allowed value and an allowed
 43          value. These dicts store the allowed enum values.
 44      attribute_map (dict): The key is attribute name
 45          and the value is json key in definition.
 46      discriminator_value_class_map (dict): A dict to go from the discriminator
 47          variable value to the discriminator class name.
 48      validations (dict): The key is the tuple path to the attribute
 49          and the for var_name this is (var_name,). The value is a dict
 50          that stores validations for max_length, min_length, max_items,
 51          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 52          inclusive_minimum, and regex.
 53      additional_properties_type (tuple): A tuple of classes accepted
 54          as additional properties values.
 55    """
 56
 57    allowed_values = {}
 58
 59    validations = {}
 60
 61    @cached_property
 62    def additional_properties_type():
 63        """
 64        This must be a method because a model may have properties that are
 65        of type self, this must run after the class is loaded
 66        """
 67        return (
 68            bool,
 69            dict,
 70            float,
 71            int,
 72            list,
 73            str,
 74            none_type,
 75        )  # noqa: E501
 76
 77    _nullable = False
 78
 79    @cached_property
 80    def openapi_types():
 81        """
 82        This must be a method because a model may have properties that are
 83        of type self, this must run after the class is loaded
 84
 85        Returns
 86            openapi_types (dict): The key is attribute name
 87                and the value is attribute type.
 88        """
 89        return {
 90            "upserted_count": (int,),  # noqa: E501
 91        }
 92
 93    @cached_property
 94    def discriminator():
 95        return None
 96
 97    attribute_map = {
 98        "upserted_count": "upsertedCount",  # noqa: E501
 99    }
100
101    read_only_vars = {}
102
103    _composed_schemas = {}
104
105    @classmethod
106    @convert_js_args_to_python_args
107    def _from_openapi_data(cls, *args, **kwargs):  # noqa: E501
108        """UpsertResponse - a model defined in OpenAPI
109
110        Keyword Args:
111            _check_type (bool): if True, values for parameters in openapi_types
112                                will be type checked and a TypeError will be
113                                raised if the wrong type is input.
114                                Defaults to True
115            _path_to_item (tuple/list): This is a list of keys or values to
116                                drill down to the model in received_data
117                                when deserializing a response
118            _spec_property_naming (bool): True if the variable names in the input data
119                                are serialized names, as specified in the OpenAPI document.
120                                False if the variable names in the input data
121                                are pythonic names, e.g. snake case (default)
122            _configuration (Configuration): the instance to use when
123                                deserializing a file_type parameter.
124                                If passed, type conversion is attempted
125                                If omitted no type conversion is done.
126            _visited_composed_classes (tuple): This stores a tuple of
127                                classes that we have traveled through so that
128                                if we see that class again we will not use its
129                                discriminator again.
130                                When traveling through a discriminator, the
131                                composed schema that is
132                                is traveled through is added to this set.
133                                For example if Animal has a discriminator
134                                petType and we pass in "Dog", and the class Dog
135                                allOf includes Animal, we move through Animal
136                                once using the discriminator, and pick Dog.
137                                Then in Dog, we will make an instance of the
138                                Animal class but this time we won't travel
139                                through its discriminator because we passed in
140                                _visited_composed_classes = (Animal,)
141            upserted_count (int): The number of vectors upserted.. [optional]  # noqa: E501
142        """
143
144        _check_type = kwargs.pop("_check_type", True)
145        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
146        _path_to_item = kwargs.pop("_path_to_item", ())
147        _configuration = kwargs.pop("_configuration", None)
148        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
149
150        self = super(OpenApiModel, cls).__new__(cls)
151
152        if args:
153            raise PineconeApiTypeError(
154                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
155                % (
156                    args,
157                    self.__class__.__name__,
158                ),
159                path_to_item=_path_to_item,
160                valid_classes=(self.__class__,),
161            )
162
163        self._data_store = {}
164        self._check_type = _check_type
165        self._spec_property_naming = _spec_property_naming
166        self._path_to_item = _path_to_item
167        self._configuration = _configuration
168        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
169
170        for var_name, var_value in kwargs.items():
171            if (
172                var_name not in self.attribute_map
173                and self._configuration is not None
174                and self._configuration.discard_unknown_keys
175                and self.additional_properties_type is None
176            ):
177                # discard variable.
178                continue
179            setattr(self, var_name, var_value)
180        return self
181
182    required_properties = set(
183        [
184            "_data_store",
185            "_check_type",
186            "_spec_property_naming",
187            "_path_to_item",
188            "_configuration",
189            "_visited_composed_classes",
190        ]
191    )
192
193    @convert_js_args_to_python_args
194    def __init__(self, *args, **kwargs):  # noqa: E501
195        """UpsertResponse - a model defined in OpenAPI
196
197        Keyword Args:
198            _check_type (bool): if True, values for parameters in openapi_types
199                                will be type checked and a TypeError will be
200                                raised if the wrong type is input.
201                                Defaults to True
202            _path_to_item (tuple/list): This is a list of keys or values to
203                                drill down to the model in received_data
204                                when deserializing a response
205            _spec_property_naming (bool): True if the variable names in the input data
206                                are serialized names, as specified in the OpenAPI document.
207                                False if the variable names in the input data
208                                are pythonic names, e.g. snake case (default)
209            _configuration (Configuration): the instance to use when
210                                deserializing a file_type parameter.
211                                If passed, type conversion is attempted
212                                If omitted no type conversion is done.
213            _visited_composed_classes (tuple): This stores a tuple of
214                                classes that we have traveled through so that
215                                if we see that class again we will not use its
216                                discriminator again.
217                                When traveling through a discriminator, the
218                                composed schema that is
219                                is traveled through is added to this set.
220                                For example if Animal has a discriminator
221                                petType and we pass in "Dog", and the class Dog
222                                allOf includes Animal, we move through Animal
223                                once using the discriminator, and pick Dog.
224                                Then in Dog, we will make an instance of the
225                                Animal class but this time we won't travel
226                                through its discriminator because we passed in
227                                _visited_composed_classes = (Animal,)
228            upserted_count (int): The number of vectors upserted.. [optional]  # noqa: E501
229        """
230
231        _check_type = kwargs.pop("_check_type", True)
232        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
233        _path_to_item = kwargs.pop("_path_to_item", ())
234        _configuration = kwargs.pop("_configuration", None)
235        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
236
237        if args:
238            raise PineconeApiTypeError(
239                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
240                % (
241                    args,
242                    self.__class__.__name__,
243                ),
244                path_to_item=_path_to_item,
245                valid_classes=(self.__class__,),
246            )
247
248        self._data_store = {}
249        self._check_type = _check_type
250        self._spec_property_naming = _spec_property_naming
251        self._path_to_item = _path_to_item
252        self._configuration = _configuration
253        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
254
255        for var_name, var_value in kwargs.items():
256            if (
257                var_name not in self.attribute_map
258                and self._configuration is not None
259                and self._configuration.discard_unknown_keys
260                and self.additional_properties_type is None
261            ):
262                # discard variable.
263                continue
264            setattr(self, var_name, var_value)
265            if var_name in self.read_only_vars:
266                raise PineconeApiAttributeError(
267                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
268                    f"class with read only attributes."
269                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
UpsertResponse(*args, **kwargs)
193    @convert_js_args_to_python_args
194    def __init__(self, *args, **kwargs):  # noqa: E501
195        """UpsertResponse - a model defined in OpenAPI
196
197        Keyword Args:
198            _check_type (bool): if True, values for parameters in openapi_types
199                                will be type checked and a TypeError will be
200                                raised if the wrong type is input.
201                                Defaults to True
202            _path_to_item (tuple/list): This is a list of keys or values to
203                                drill down to the model in received_data
204                                when deserializing a response
205            _spec_property_naming (bool): True if the variable names in the input data
206                                are serialized names, as specified in the OpenAPI document.
207                                False if the variable names in the input data
208                                are pythonic names, e.g. snake case (default)
209            _configuration (Configuration): the instance to use when
210                                deserializing a file_type parameter.
211                                If passed, type conversion is attempted
212                                If omitted no type conversion is done.
213            _visited_composed_classes (tuple): This stores a tuple of
214                                classes that we have traveled through so that
215                                if we see that class again we will not use its
216                                discriminator again.
217                                When traveling through a discriminator, the
218                                composed schema that is
219                                is traveled through is added to this set.
220                                For example if Animal has a discriminator
221                                petType and we pass in "Dog", and the class Dog
222                                allOf includes Animal, we move through Animal
223                                once using the discriminator, and pick Dog.
224                                Then in Dog, we will make an instance of the
225                                Animal class but this time we won't travel
226                                through its discriminator because we passed in
227                                _visited_composed_classes = (Animal,)
228            upserted_count (int): The number of vectors upserted.. [optional]  # noqa: E501
229        """
230
231        _check_type = kwargs.pop("_check_type", True)
232        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
233        _path_to_item = kwargs.pop("_path_to_item", ())
234        _configuration = kwargs.pop("_configuration", None)
235        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
236
237        if args:
238            raise PineconeApiTypeError(
239                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
240                % (
241                    args,
242                    self.__class__.__name__,
243                ),
244                path_to_item=_path_to_item,
245                valid_classes=(self.__class__,),
246            )
247
248        self._data_store = {}
249        self._check_type = _check_type
250        self._spec_property_naming = _spec_property_naming
251        self._path_to_item = _path_to_item
252        self._configuration = _configuration
253        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
254
255        for var_name, var_value in kwargs.items():
256            if (
257                var_name not in self.attribute_map
258                and self._configuration is not None
259                and self._configuration.discard_unknown_keys
260                and self.additional_properties_type is None
261            ):
262                # discard variable.
263                continue
264            setattr(self, var_name, var_value)
265            if var_name in self.read_only_vars:
266                raise PineconeApiAttributeError(
267                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
268                    f"class with read only attributes."
269                )

UpsertResponse - a model defined in OpenAPI

Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) upserted_count (int): The number of vectors upserted.. [optional] # noqa: E501

allowed_values = {}
validations = {}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'upserted_count': 'upsertedCount'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class UpdateRequest(pinecone.core.openapi.shared.model_utils.ModelNormal):
 39class UpdateRequest(ModelNormal):
 40    """NOTE: This class is auto generated by OpenAPI Generator.
 41    Ref: https://openapi-generator.tech
 42
 43    Do not edit the class manually.
 44
 45    Attributes:
 46      allowed_values (dict): The key is the tuple path to the attribute
 47          and the for var_name this is (var_name,). The value is a dict
 48          with a capitalized key describing the allowed value and an allowed
 49          value. These dicts store the allowed enum values.
 50      attribute_map (dict): The key is attribute name
 51          and the value is json key in definition.
 52      discriminator_value_class_map (dict): A dict to go from the discriminator
 53          variable value to the discriminator class name.
 54      validations (dict): The key is the tuple path to the attribute
 55          and the for var_name this is (var_name,). The value is a dict
 56          that stores validations for max_length, min_length, max_items,
 57          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 58          inclusive_minimum, and regex.
 59      additional_properties_type (tuple): A tuple of classes accepted
 60          as additional properties values.
 61    """
 62
 63    allowed_values = {}
 64
 65    validations = {
 66        ("id",): {
 67            "max_length": 512,
 68            "min_length": 1,
 69        },
 70        ("values",): {},
 71    }
 72
 73    @cached_property
 74    def additional_properties_type():
 75        """
 76        This must be a method because a model may have properties that are
 77        of type self, this must run after the class is loaded
 78        """
 79        lazy_import()
 80        return (
 81            bool,
 82            dict,
 83            float,
 84            int,
 85            list,
 86            str,
 87            none_type,
 88        )  # noqa: E501
 89
 90    _nullable = False
 91
 92    @cached_property
 93    def openapi_types():
 94        """
 95        This must be a method because a model may have properties that are
 96        of type self, this must run after the class is loaded
 97
 98        Returns
 99            openapi_types (dict): The key is attribute name
100                and the value is attribute type.
101        """
102        lazy_import()
103        return {
104            "id": (str,),  # noqa: E501
105            "values": ([float],),  # noqa: E501
106            "sparse_values": (SparseValues,),  # noqa: E501
107            "set_metadata": ({str: (bool, dict, float, int, list, str, none_type)},),  # noqa: E501
108            "namespace": (str,),  # noqa: E501
109        }
110
111    @cached_property
112    def discriminator():
113        return None
114
115    attribute_map = {
116        "id": "id",  # noqa: E501
117        "values": "values",  # noqa: E501
118        "sparse_values": "sparseValues",  # noqa: E501
119        "set_metadata": "setMetadata",  # noqa: E501
120        "namespace": "namespace",  # noqa: E501
121    }
122
123    read_only_vars = {}
124
125    _composed_schemas = {}
126
127    @classmethod
128    @convert_js_args_to_python_args
129    def _from_openapi_data(cls, id, *args, **kwargs):  # noqa: E501
130        """UpdateRequest - a model defined in OpenAPI
131
132        Args:
133            id (str): Vector's unique id.
134
135        Keyword Args:
136            _check_type (bool): if True, values for parameters in openapi_types
137                                will be type checked and a TypeError will be
138                                raised if the wrong type is input.
139                                Defaults to True
140            _path_to_item (tuple/list): This is a list of keys or values to
141                                drill down to the model in received_data
142                                when deserializing a response
143            _spec_property_naming (bool): True if the variable names in the input data
144                                are serialized names, as specified in the OpenAPI document.
145                                False if the variable names in the input data
146                                are pythonic names, e.g. snake case (default)
147            _configuration (Configuration): the instance to use when
148                                deserializing a file_type parameter.
149                                If passed, type conversion is attempted
150                                If omitted no type conversion is done.
151            _visited_composed_classes (tuple): This stores a tuple of
152                                classes that we have traveled through so that
153                                if we see that class again we will not use its
154                                discriminator again.
155                                When traveling through a discriminator, the
156                                composed schema that is
157                                is traveled through is added to this set.
158                                For example if Animal has a discriminator
159                                petType and we pass in "Dog", and the class Dog
160                                allOf includes Animal, we move through Animal
161                                once using the discriminator, and pick Dog.
162                                Then in Dog, we will make an instance of the
163                                Animal class but this time we won't travel
164                                through its discriminator because we passed in
165                                _visited_composed_classes = (Animal,)
166            values ([float]): Vector data.. [optional]  # noqa: E501
167            sparse_values (SparseValues): [optional]  # noqa: E501
168            set_metadata ({str: (bool, dict, float, int, list, str, none_type)}): Metadata to set for the vector.. [optional]  # noqa: E501
169            namespace (str): The namespace containing the vector to update.. [optional]  # noqa: E501
170        """
171
172        _check_type = kwargs.pop("_check_type", True)
173        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
174        _path_to_item = kwargs.pop("_path_to_item", ())
175        _configuration = kwargs.pop("_configuration", None)
176        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
177
178        self = super(OpenApiModel, cls).__new__(cls)
179
180        if args:
181            raise PineconeApiTypeError(
182                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
183                % (
184                    args,
185                    self.__class__.__name__,
186                ),
187                path_to_item=_path_to_item,
188                valid_classes=(self.__class__,),
189            )
190
191        self._data_store = {}
192        self._check_type = _check_type
193        self._spec_property_naming = _spec_property_naming
194        self._path_to_item = _path_to_item
195        self._configuration = _configuration
196        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
197
198        self.id = id
199        for var_name, var_value in kwargs.items():
200            if (
201                var_name not in self.attribute_map
202                and self._configuration is not None
203                and self._configuration.discard_unknown_keys
204                and self.additional_properties_type is None
205            ):
206                # discard variable.
207                continue
208            setattr(self, var_name, var_value)
209        return self
210
211    required_properties = set(
212        [
213            "_data_store",
214            "_check_type",
215            "_spec_property_naming",
216            "_path_to_item",
217            "_configuration",
218            "_visited_composed_classes",
219        ]
220    )
221
222    @convert_js_args_to_python_args
223    def __init__(self, id, *args, **kwargs):  # noqa: E501
224        """UpdateRequest - a model defined in OpenAPI
225
226        Args:
227            id (str): Vector's unique id.
228
229        Keyword Args:
230            _check_type (bool): if True, values for parameters in openapi_types
231                                will be type checked and a TypeError will be
232                                raised if the wrong type is input.
233                                Defaults to True
234            _path_to_item (tuple/list): This is a list of keys or values to
235                                drill down to the model in received_data
236                                when deserializing a response
237            _spec_property_naming (bool): True if the variable names in the input data
238                                are serialized names, as specified in the OpenAPI document.
239                                False if the variable names in the input data
240                                are pythonic names, e.g. snake case (default)
241            _configuration (Configuration): the instance to use when
242                                deserializing a file_type parameter.
243                                If passed, type conversion is attempted
244                                If omitted no type conversion is done.
245            _visited_composed_classes (tuple): This stores a tuple of
246                                classes that we have traveled through so that
247                                if we see that class again we will not use its
248                                discriminator again.
249                                When traveling through a discriminator, the
250                                composed schema that is
251                                is traveled through is added to this set.
252                                For example if Animal has a discriminator
253                                petType and we pass in "Dog", and the class Dog
254                                allOf includes Animal, we move through Animal
255                                once using the discriminator, and pick Dog.
256                                Then in Dog, we will make an instance of the
257                                Animal class but this time we won't travel
258                                through its discriminator because we passed in
259                                _visited_composed_classes = (Animal,)
260            values ([float]): Vector data.. [optional]  # noqa: E501
261            sparse_values (SparseValues): [optional]  # noqa: E501
262            set_metadata ({str: (bool, dict, float, int, list, str, none_type)}): Metadata to set for the vector.. [optional]  # noqa: E501
263            namespace (str): The namespace containing the vector to update.. [optional]  # noqa: E501
264        """
265
266        _check_type = kwargs.pop("_check_type", True)
267        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
268        _path_to_item = kwargs.pop("_path_to_item", ())
269        _configuration = kwargs.pop("_configuration", None)
270        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
271
272        if args:
273            raise PineconeApiTypeError(
274                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
275                % (
276                    args,
277                    self.__class__.__name__,
278                ),
279                path_to_item=_path_to_item,
280                valid_classes=(self.__class__,),
281            )
282
283        self._data_store = {}
284        self._check_type = _check_type
285        self._spec_property_naming = _spec_property_naming
286        self._path_to_item = _path_to_item
287        self._configuration = _configuration
288        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
289
290        self.id = id
291        for var_name, var_value in kwargs.items():
292            if (
293                var_name not in self.attribute_map
294                and self._configuration is not None
295                and self._configuration.discard_unknown_keys
296                and self.additional_properties_type is None
297            ):
298                # discard variable.
299                continue
300            setattr(self, var_name, var_value)
301            if var_name in self.read_only_vars:
302                raise PineconeApiAttributeError(
303                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
304                    f"class with read only attributes."
305                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
UpdateRequest(id, *args, **kwargs)
222    @convert_js_args_to_python_args
223    def __init__(self, id, *args, **kwargs):  # noqa: E501
224        """UpdateRequest - a model defined in OpenAPI
225
226        Args:
227            id (str): Vector's unique id.
228
229        Keyword Args:
230            _check_type (bool): if True, values for parameters in openapi_types
231                                will be type checked and a TypeError will be
232                                raised if the wrong type is input.
233                                Defaults to True
234            _path_to_item (tuple/list): This is a list of keys or values to
235                                drill down to the model in received_data
236                                when deserializing a response
237            _spec_property_naming (bool): True if the variable names in the input data
238                                are serialized names, as specified in the OpenAPI document.
239                                False if the variable names in the input data
240                                are pythonic names, e.g. snake case (default)
241            _configuration (Configuration): the instance to use when
242                                deserializing a file_type parameter.
243                                If passed, type conversion is attempted
244                                If omitted no type conversion is done.
245            _visited_composed_classes (tuple): This stores a tuple of
246                                classes that we have traveled through so that
247                                if we see that class again we will not use its
248                                discriminator again.
249                                When traveling through a discriminator, the
250                                composed schema that is
251                                is traveled through is added to this set.
252                                For example if Animal has a discriminator
253                                petType and we pass in "Dog", and the class Dog
254                                allOf includes Animal, we move through Animal
255                                once using the discriminator, and pick Dog.
256                                Then in Dog, we will make an instance of the
257                                Animal class but this time we won't travel
258                                through its discriminator because we passed in
259                                _visited_composed_classes = (Animal,)
260            values ([float]): Vector data.. [optional]  # noqa: E501
261            sparse_values (SparseValues): [optional]  # noqa: E501
262            set_metadata ({str: (bool, dict, float, int, list, str, none_type)}): Metadata to set for the vector.. [optional]  # noqa: E501
263            namespace (str): The namespace containing the vector to update.. [optional]  # noqa: E501
264        """
265
266        _check_type = kwargs.pop("_check_type", True)
267        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
268        _path_to_item = kwargs.pop("_path_to_item", ())
269        _configuration = kwargs.pop("_configuration", None)
270        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
271
272        if args:
273            raise PineconeApiTypeError(
274                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
275                % (
276                    args,
277                    self.__class__.__name__,
278                ),
279                path_to_item=_path_to_item,
280                valid_classes=(self.__class__,),
281            )
282
283        self._data_store = {}
284        self._check_type = _check_type
285        self._spec_property_naming = _spec_property_naming
286        self._path_to_item = _path_to_item
287        self._configuration = _configuration
288        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
289
290        self.id = id
291        for var_name, var_value in kwargs.items():
292            if (
293                var_name not in self.attribute_map
294                and self._configuration is not None
295                and self._configuration.discard_unknown_keys
296                and self.additional_properties_type is None
297            ):
298                # discard variable.
299                continue
300            setattr(self, var_name, var_value)
301            if var_name in self.read_only_vars:
302                raise PineconeApiAttributeError(
303                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
304                    f"class with read only attributes."
305                )

UpdateRequest - a model defined in OpenAPI

Arguments:
  • id (str): Vector's unique id.
Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) values ([float]): Vector data.. [optional] # noqa: E501 sparse_values (SparseValues): [optional] # noqa: E501 set_metadata ({str: (bool, dict, float, int, list, str, none_type)}): Metadata to set for the vector.. [optional] # noqa: E501 namespace (str): The namespace containing the vector to update.. [optional] # noqa: E501

allowed_values = {}
validations = {('id',): {'max_length': 512, 'min_length': 1}, ('values',): {}}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'id': 'id', 'values': 'values', 'sparse_values': 'sparseValues', 'set_metadata': 'setMetadata', 'namespace': 'namespace'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
id
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class Vector(pinecone.core.openapi.shared.model_utils.ModelNormal):
 39class Vector(ModelNormal):
 40    """NOTE: This class is auto generated by OpenAPI Generator.
 41    Ref: https://openapi-generator.tech
 42
 43    Do not edit the class manually.
 44
 45    Attributes:
 46      allowed_values (dict): The key is the tuple path to the attribute
 47          and the for var_name this is (var_name,). The value is a dict
 48          with a capitalized key describing the allowed value and an allowed
 49          value. These dicts store the allowed enum values.
 50      attribute_map (dict): The key is attribute name
 51          and the value is json key in definition.
 52      discriminator_value_class_map (dict): A dict to go from the discriminator
 53          variable value to the discriminator class name.
 54      validations (dict): The key is the tuple path to the attribute
 55          and the for var_name this is (var_name,). The value is a dict
 56          that stores validations for max_length, min_length, max_items,
 57          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 58          inclusive_minimum, and regex.
 59      additional_properties_type (tuple): A tuple of classes accepted
 60          as additional properties values.
 61    """
 62
 63    allowed_values = {}
 64
 65    validations = {
 66        ("id",): {
 67            "max_length": 512,
 68            "min_length": 1,
 69        },
 70        ("values",): {},
 71    }
 72
 73    @cached_property
 74    def additional_properties_type():
 75        """
 76        This must be a method because a model may have properties that are
 77        of type self, this must run after the class is loaded
 78        """
 79        lazy_import()
 80        return (
 81            bool,
 82            dict,
 83            float,
 84            int,
 85            list,
 86            str,
 87            none_type,
 88        )  # noqa: E501
 89
 90    _nullable = False
 91
 92    @cached_property
 93    def openapi_types():
 94        """
 95        This must be a method because a model may have properties that are
 96        of type self, this must run after the class is loaded
 97
 98        Returns
 99            openapi_types (dict): The key is attribute name
100                and the value is attribute type.
101        """
102        lazy_import()
103        return {
104            "id": (str,),  # noqa: E501
105            "values": ([float],),  # noqa: E501
106            "sparse_values": (SparseValues,),  # noqa: E501
107            "metadata": ({str: (bool, dict, float, int, list, str, none_type)},),  # noqa: E501
108        }
109
110    @cached_property
111    def discriminator():
112        return None
113
114    attribute_map = {
115        "id": "id",  # noqa: E501
116        "values": "values",  # noqa: E501
117        "sparse_values": "sparseValues",  # noqa: E501
118        "metadata": "metadata",  # noqa: E501
119    }
120
121    read_only_vars = {}
122
123    _composed_schemas = {}
124
125    @classmethod
126    @convert_js_args_to_python_args
127    def _from_openapi_data(cls, id, values, *args, **kwargs):  # noqa: E501
128        """Vector - a model defined in OpenAPI
129
130        Args:
131            id (str): This is the vector's unique id.
132            values ([float]): This is the vector data included in the request.
133
134        Keyword Args:
135            _check_type (bool): if True, values for parameters in openapi_types
136                                will be type checked and a TypeError will be
137                                raised if the wrong type is input.
138                                Defaults to True
139            _path_to_item (tuple/list): This is a list of keys or values to
140                                drill down to the model in received_data
141                                when deserializing a response
142            _spec_property_naming (bool): True if the variable names in the input data
143                                are serialized names, as specified in the OpenAPI document.
144                                False if the variable names in the input data
145                                are pythonic names, e.g. snake case (default)
146            _configuration (Configuration): the instance to use when
147                                deserializing a file_type parameter.
148                                If passed, type conversion is attempted
149                                If omitted no type conversion is done.
150            _visited_composed_classes (tuple): This stores a tuple of
151                                classes that we have traveled through so that
152                                if we see that class again we will not use its
153                                discriminator again.
154                                When traveling through a discriminator, the
155                                composed schema that is
156                                is traveled through is added to this set.
157                                For example if Animal has a discriminator
158                                petType and we pass in "Dog", and the class Dog
159                                allOf includes Animal, we move through Animal
160                                once using the discriminator, and pick Dog.
161                                Then in Dog, we will make an instance of the
162                                Animal class but this time we won't travel
163                                through its discriminator because we passed in
164                                _visited_composed_classes = (Animal,)
165            sparse_values (SparseValues): [optional]  # noqa: E501
166            metadata ({str: (bool, dict, float, int, list, str, none_type)}): This is the metadata included in the request.. [optional]  # noqa: E501
167        """
168
169        _check_type = kwargs.pop("_check_type", True)
170        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
171        _path_to_item = kwargs.pop("_path_to_item", ())
172        _configuration = kwargs.pop("_configuration", None)
173        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
174
175        self = super(OpenApiModel, cls).__new__(cls)
176
177        if args:
178            raise PineconeApiTypeError(
179                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
180                % (
181                    args,
182                    self.__class__.__name__,
183                ),
184                path_to_item=_path_to_item,
185                valid_classes=(self.__class__,),
186            )
187
188        self._data_store = {}
189        self._check_type = _check_type
190        self._spec_property_naming = _spec_property_naming
191        self._path_to_item = _path_to_item
192        self._configuration = _configuration
193        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
194
195        self.id = id
196        self.values = values
197        for var_name, var_value in kwargs.items():
198            if (
199                var_name not in self.attribute_map
200                and self._configuration is not None
201                and self._configuration.discard_unknown_keys
202                and self.additional_properties_type is None
203            ):
204                # discard variable.
205                continue
206            setattr(self, var_name, var_value)
207        return self
208
209    required_properties = set(
210        [
211            "_data_store",
212            "_check_type",
213            "_spec_property_naming",
214            "_path_to_item",
215            "_configuration",
216            "_visited_composed_classes",
217        ]
218    )
219
220    @convert_js_args_to_python_args
221    def __init__(self, id, values, *args, **kwargs):  # noqa: E501
222        """Vector - a model defined in OpenAPI
223
224        Args:
225            id (str): This is the vector's unique id.
226            values ([float]): This is the vector data included in the request.
227
228        Keyword Args:
229            _check_type (bool): if True, values for parameters in openapi_types
230                                will be type checked and a TypeError will be
231                                raised if the wrong type is input.
232                                Defaults to True
233            _path_to_item (tuple/list): This is a list of keys or values to
234                                drill down to the model in received_data
235                                when deserializing a response
236            _spec_property_naming (bool): True if the variable names in the input data
237                                are serialized names, as specified in the OpenAPI document.
238                                False if the variable names in the input data
239                                are pythonic names, e.g. snake case (default)
240            _configuration (Configuration): the instance to use when
241                                deserializing a file_type parameter.
242                                If passed, type conversion is attempted
243                                If omitted no type conversion is done.
244            _visited_composed_classes (tuple): This stores a tuple of
245                                classes that we have traveled through so that
246                                if we see that class again we will not use its
247                                discriminator again.
248                                When traveling through a discriminator, the
249                                composed schema that is
250                                is traveled through is added to this set.
251                                For example if Animal has a discriminator
252                                petType and we pass in "Dog", and the class Dog
253                                allOf includes Animal, we move through Animal
254                                once using the discriminator, and pick Dog.
255                                Then in Dog, we will make an instance of the
256                                Animal class but this time we won't travel
257                                through its discriminator because we passed in
258                                _visited_composed_classes = (Animal,)
259            sparse_values (SparseValues): [optional]  # noqa: E501
260            metadata ({str: (bool, dict, float, int, list, str, none_type)}): This is the metadata included in the request.. [optional]  # noqa: E501
261        """
262
263        _check_type = kwargs.pop("_check_type", True)
264        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
265        _path_to_item = kwargs.pop("_path_to_item", ())
266        _configuration = kwargs.pop("_configuration", None)
267        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
268
269        if args:
270            raise PineconeApiTypeError(
271                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
272                % (
273                    args,
274                    self.__class__.__name__,
275                ),
276                path_to_item=_path_to_item,
277                valid_classes=(self.__class__,),
278            )
279
280        self._data_store = {}
281        self._check_type = _check_type
282        self._spec_property_naming = _spec_property_naming
283        self._path_to_item = _path_to_item
284        self._configuration = _configuration
285        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
286
287        self.id = id
288        self.values = values
289        for var_name, var_value in kwargs.items():
290            if (
291                var_name not in self.attribute_map
292                and self._configuration is not None
293                and self._configuration.discard_unknown_keys
294                and self.additional_properties_type is None
295            ):
296                # discard variable.
297                continue
298            setattr(self, var_name, var_value)
299            if var_name in self.read_only_vars:
300                raise PineconeApiAttributeError(
301                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
302                    f"class with read only attributes."
303                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
Vector(id, values, *args, **kwargs)
220    @convert_js_args_to_python_args
221    def __init__(self, id, values, *args, **kwargs):  # noqa: E501
222        """Vector - a model defined in OpenAPI
223
224        Args:
225            id (str): This is the vector's unique id.
226            values ([float]): This is the vector data included in the request.
227
228        Keyword Args:
229            _check_type (bool): if True, values for parameters in openapi_types
230                                will be type checked and a TypeError will be
231                                raised if the wrong type is input.
232                                Defaults to True
233            _path_to_item (tuple/list): This is a list of keys or values to
234                                drill down to the model in received_data
235                                when deserializing a response
236            _spec_property_naming (bool): True if the variable names in the input data
237                                are serialized names, as specified in the OpenAPI document.
238                                False if the variable names in the input data
239                                are pythonic names, e.g. snake case (default)
240            _configuration (Configuration): the instance to use when
241                                deserializing a file_type parameter.
242                                If passed, type conversion is attempted
243                                If omitted no type conversion is done.
244            _visited_composed_classes (tuple): This stores a tuple of
245                                classes that we have traveled through so that
246                                if we see that class again we will not use its
247                                discriminator again.
248                                When traveling through a discriminator, the
249                                composed schema that is
250                                is traveled through is added to this set.
251                                For example if Animal has a discriminator
252                                petType and we pass in "Dog", and the class Dog
253                                allOf includes Animal, we move through Animal
254                                once using the discriminator, and pick Dog.
255                                Then in Dog, we will make an instance of the
256                                Animal class but this time we won't travel
257                                through its discriminator because we passed in
258                                _visited_composed_classes = (Animal,)
259            sparse_values (SparseValues): [optional]  # noqa: E501
260            metadata ({str: (bool, dict, float, int, list, str, none_type)}): This is the metadata included in the request.. [optional]  # noqa: E501
261        """
262
263        _check_type = kwargs.pop("_check_type", True)
264        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
265        _path_to_item = kwargs.pop("_path_to_item", ())
266        _configuration = kwargs.pop("_configuration", None)
267        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
268
269        if args:
270            raise PineconeApiTypeError(
271                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
272                % (
273                    args,
274                    self.__class__.__name__,
275                ),
276                path_to_item=_path_to_item,
277                valid_classes=(self.__class__,),
278            )
279
280        self._data_store = {}
281        self._check_type = _check_type
282        self._spec_property_naming = _spec_property_naming
283        self._path_to_item = _path_to_item
284        self._configuration = _configuration
285        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
286
287        self.id = id
288        self.values = values
289        for var_name, var_value in kwargs.items():
290            if (
291                var_name not in self.attribute_map
292                and self._configuration is not None
293                and self._configuration.discard_unknown_keys
294                and self.additional_properties_type is None
295            ):
296                # discard variable.
297                continue
298            setattr(self, var_name, var_value)
299            if var_name in self.read_only_vars:
300                raise PineconeApiAttributeError(
301                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
302                    f"class with read only attributes."
303                )

Vector - a model defined in OpenAPI

Arguments:
  • id (str): This is the vector's unique id.
  • values ([float]): This is the vector data included in the request.
Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) sparse_values (SparseValues): [optional] # noqa: E501 metadata ({str: (bool, dict, float, int, list, str, none_type)}): This is the metadata included in the request.. [optional] # noqa: E501

allowed_values = {}
validations = {('id',): {'max_length': 512, 'min_length': 1}, ('values',): {}}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'id': 'id', 'values': 'values', 'sparse_values': 'sparseValues', 'metadata': 'metadata'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
id
values
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class DeleteRequest(pinecone.core.openapi.shared.model_utils.ModelNormal):
 33class DeleteRequest(ModelNormal):
 34    """NOTE: This class is auto generated by OpenAPI Generator.
 35    Ref: https://openapi-generator.tech
 36
 37    Do not edit the class manually.
 38
 39    Attributes:
 40      allowed_values (dict): The key is the tuple path to the attribute
 41          and the for var_name this is (var_name,). The value is a dict
 42          with a capitalized key describing the allowed value and an allowed
 43          value. These dicts store the allowed enum values.
 44      attribute_map (dict): The key is attribute name
 45          and the value is json key in definition.
 46      discriminator_value_class_map (dict): A dict to go from the discriminator
 47          variable value to the discriminator class name.
 48      validations (dict): The key is the tuple path to the attribute
 49          and the for var_name this is (var_name,). The value is a dict
 50          that stores validations for max_length, min_length, max_items,
 51          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 52          inclusive_minimum, and regex.
 53      additional_properties_type (tuple): A tuple of classes accepted
 54          as additional properties values.
 55    """
 56
 57    allowed_values = {}
 58
 59    validations = {
 60        ("ids",): {},
 61    }
 62
 63    @cached_property
 64    def additional_properties_type():
 65        """
 66        This must be a method because a model may have properties that are
 67        of type self, this must run after the class is loaded
 68        """
 69        return (
 70            bool,
 71            dict,
 72            float,
 73            int,
 74            list,
 75            str,
 76            none_type,
 77        )  # noqa: E501
 78
 79    _nullable = False
 80
 81    @cached_property
 82    def openapi_types():
 83        """
 84        This must be a method because a model may have properties that are
 85        of type self, this must run after the class is loaded
 86
 87        Returns
 88            openapi_types (dict): The key is attribute name
 89                and the value is attribute type.
 90        """
 91        return {
 92            "ids": ([str],),  # noqa: E501
 93            "delete_all": (bool,),  # noqa: E501
 94            "namespace": (str,),  # noqa: E501
 95            "filter": ({str: (bool, dict, float, int, list, str, none_type)},),  # noqa: E501
 96        }
 97
 98    @cached_property
 99    def discriminator():
100        return None
101
102    attribute_map = {
103        "ids": "ids",  # noqa: E501
104        "delete_all": "deleteAll",  # noqa: E501
105        "namespace": "namespace",  # noqa: E501
106        "filter": "filter",  # noqa: E501
107    }
108
109    read_only_vars = {}
110
111    _composed_schemas = {}
112
113    @classmethod
114    @convert_js_args_to_python_args
115    def _from_openapi_data(cls, *args, **kwargs):  # noqa: E501
116        """DeleteRequest - a model defined in OpenAPI
117
118        Keyword Args:
119            _check_type (bool): if True, values for parameters in openapi_types
120                                will be type checked and a TypeError will be
121                                raised if the wrong type is input.
122                                Defaults to True
123            _path_to_item (tuple/list): This is a list of keys or values to
124                                drill down to the model in received_data
125                                when deserializing a response
126            _spec_property_naming (bool): True if the variable names in the input data
127                                are serialized names, as specified in the OpenAPI document.
128                                False if the variable names in the input data
129                                are pythonic names, e.g. snake case (default)
130            _configuration (Configuration): the instance to use when
131                                deserializing a file_type parameter.
132                                If passed, type conversion is attempted
133                                If omitted no type conversion is done.
134            _visited_composed_classes (tuple): This stores a tuple of
135                                classes that we have traveled through so that
136                                if we see that class again we will not use its
137                                discriminator again.
138                                When traveling through a discriminator, the
139                                composed schema that is
140                                is traveled through is added to this set.
141                                For example if Animal has a discriminator
142                                petType and we pass in "Dog", and the class Dog
143                                allOf includes Animal, we move through Animal
144                                once using the discriminator, and pick Dog.
145                                Then in Dog, we will make an instance of the
146                                Animal class but this time we won't travel
147                                through its discriminator because we passed in
148                                _visited_composed_classes = (Animal,)
149            ids ([str]): Vectors to delete.. [optional]  # noqa: E501
150            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional] if omitted the server will use the default value of False  # noqa: E501
151            namespace (str): The namespace to delete vectors from, if applicable.. [optional]  # noqa: E501
152            filter ({str: (bool, dict, float, int, list, str, none_type)}): If specified, the metadata filter here will be used to select the vectors to delete. This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata). Serverless indexes do not support delete by metadata. Instead, you can use the `list` operation to fetch the vector IDs based on their common ID prefix and then delete the records by ID.. [optional]  # noqa: E501
153        """
154
155        _check_type = kwargs.pop("_check_type", True)
156        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
157        _path_to_item = kwargs.pop("_path_to_item", ())
158        _configuration = kwargs.pop("_configuration", None)
159        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
160
161        self = super(OpenApiModel, cls).__new__(cls)
162
163        if args:
164            raise PineconeApiTypeError(
165                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
166                % (
167                    args,
168                    self.__class__.__name__,
169                ),
170                path_to_item=_path_to_item,
171                valid_classes=(self.__class__,),
172            )
173
174        self._data_store = {}
175        self._check_type = _check_type
176        self._spec_property_naming = _spec_property_naming
177        self._path_to_item = _path_to_item
178        self._configuration = _configuration
179        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
180
181        for var_name, var_value in kwargs.items():
182            if (
183                var_name not in self.attribute_map
184                and self._configuration is not None
185                and self._configuration.discard_unknown_keys
186                and self.additional_properties_type is None
187            ):
188                # discard variable.
189                continue
190            setattr(self, var_name, var_value)
191        return self
192
193    required_properties = set(
194        [
195            "_data_store",
196            "_check_type",
197            "_spec_property_naming",
198            "_path_to_item",
199            "_configuration",
200            "_visited_composed_classes",
201        ]
202    )
203
204    @convert_js_args_to_python_args
205    def __init__(self, *args, **kwargs):  # noqa: E501
206        """DeleteRequest - a model defined in OpenAPI
207
208        Keyword Args:
209            _check_type (bool): if True, values for parameters in openapi_types
210                                will be type checked and a TypeError will be
211                                raised if the wrong type is input.
212                                Defaults to True
213            _path_to_item (tuple/list): This is a list of keys or values to
214                                drill down to the model in received_data
215                                when deserializing a response
216            _spec_property_naming (bool): True if the variable names in the input data
217                                are serialized names, as specified in the OpenAPI document.
218                                False if the variable names in the input data
219                                are pythonic names, e.g. snake case (default)
220            _configuration (Configuration): the instance to use when
221                                deserializing a file_type parameter.
222                                If passed, type conversion is attempted
223                                If omitted no type conversion is done.
224            _visited_composed_classes (tuple): This stores a tuple of
225                                classes that we have traveled through so that
226                                if we see that class again we will not use its
227                                discriminator again.
228                                When traveling through a discriminator, the
229                                composed schema that is
230                                is traveled through is added to this set.
231                                For example if Animal has a discriminator
232                                petType and we pass in "Dog", and the class Dog
233                                allOf includes Animal, we move through Animal
234                                once using the discriminator, and pick Dog.
235                                Then in Dog, we will make an instance of the
236                                Animal class but this time we won't travel
237                                through its discriminator because we passed in
238                                _visited_composed_classes = (Animal,)
239            ids ([str]): Vectors to delete.. [optional]  # noqa: E501
240            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional] if omitted the server will use the default value of False  # noqa: E501
241            namespace (str): The namespace to delete vectors from, if applicable.. [optional]  # noqa: E501
242            filter ({str: (bool, dict, float, int, list, str, none_type)}): If specified, the metadata filter here will be used to select the vectors to delete. This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata). Serverless indexes do not support delete by metadata. Instead, you can use the `list` operation to fetch the vector IDs based on their common ID prefix and then delete the records by ID.. [optional]  # noqa: E501
243        """
244
245        _check_type = kwargs.pop("_check_type", True)
246        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
247        _path_to_item = kwargs.pop("_path_to_item", ())
248        _configuration = kwargs.pop("_configuration", None)
249        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
250
251        if args:
252            raise PineconeApiTypeError(
253                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
254                % (
255                    args,
256                    self.__class__.__name__,
257                ),
258                path_to_item=_path_to_item,
259                valid_classes=(self.__class__,),
260            )
261
262        self._data_store = {}
263        self._check_type = _check_type
264        self._spec_property_naming = _spec_property_naming
265        self._path_to_item = _path_to_item
266        self._configuration = _configuration
267        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
268
269        for var_name, var_value in kwargs.items():
270            if (
271                var_name not in self.attribute_map
272                and self._configuration is not None
273                and self._configuration.discard_unknown_keys
274                and self.additional_properties_type is None
275            ):
276                # discard variable.
277                continue
278            setattr(self, var_name, var_value)
279            if var_name in self.read_only_vars:
280                raise PineconeApiAttributeError(
281                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
282                    f"class with read only attributes."
283                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
DeleteRequest(*args, **kwargs)
204    @convert_js_args_to_python_args
205    def __init__(self, *args, **kwargs):  # noqa: E501
206        """DeleteRequest - a model defined in OpenAPI
207
208        Keyword Args:
209            _check_type (bool): if True, values for parameters in openapi_types
210                                will be type checked and a TypeError will be
211                                raised if the wrong type is input.
212                                Defaults to True
213            _path_to_item (tuple/list): This is a list of keys or values to
214                                drill down to the model in received_data
215                                when deserializing a response
216            _spec_property_naming (bool): True if the variable names in the input data
217                                are serialized names, as specified in the OpenAPI document.
218                                False if the variable names in the input data
219                                are pythonic names, e.g. snake case (default)
220            _configuration (Configuration): the instance to use when
221                                deserializing a file_type parameter.
222                                If passed, type conversion is attempted
223                                If omitted no type conversion is done.
224            _visited_composed_classes (tuple): This stores a tuple of
225                                classes that we have traveled through so that
226                                if we see that class again we will not use its
227                                discriminator again.
228                                When traveling through a discriminator, the
229                                composed schema that is
230                                is traveled through is added to this set.
231                                For example if Animal has a discriminator
232                                petType and we pass in "Dog", and the class Dog
233                                allOf includes Animal, we move through Animal
234                                once using the discriminator, and pick Dog.
235                                Then in Dog, we will make an instance of the
236                                Animal class but this time we won't travel
237                                through its discriminator because we passed in
238                                _visited_composed_classes = (Animal,)
239            ids ([str]): Vectors to delete.. [optional]  # noqa: E501
240            delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional] if omitted the server will use the default value of False  # noqa: E501
241            namespace (str): The namespace to delete vectors from, if applicable.. [optional]  # noqa: E501
242            filter ({str: (bool, dict, float, int, list, str, none_type)}): If specified, the metadata filter here will be used to select the vectors to delete. This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata). Serverless indexes do not support delete by metadata. Instead, you can use the `list` operation to fetch the vector IDs based on their common ID prefix and then delete the records by ID.. [optional]  # noqa: E501
243        """
244
245        _check_type = kwargs.pop("_check_type", True)
246        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
247        _path_to_item = kwargs.pop("_path_to_item", ())
248        _configuration = kwargs.pop("_configuration", None)
249        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
250
251        if args:
252            raise PineconeApiTypeError(
253                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
254                % (
255                    args,
256                    self.__class__.__name__,
257                ),
258                path_to_item=_path_to_item,
259                valid_classes=(self.__class__,),
260            )
261
262        self._data_store = {}
263        self._check_type = _check_type
264        self._spec_property_naming = _spec_property_naming
265        self._path_to_item = _path_to_item
266        self._configuration = _configuration
267        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
268
269        for var_name, var_value in kwargs.items():
270            if (
271                var_name not in self.attribute_map
272                and self._configuration is not None
273                and self._configuration.discard_unknown_keys
274                and self.additional_properties_type is None
275            ):
276                # discard variable.
277                continue
278            setattr(self, var_name, var_value)
279            if var_name in self.read_only_vars:
280                raise PineconeApiAttributeError(
281                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
282                    f"class with read only attributes."
283                )

DeleteRequest - a model defined in OpenAPI

Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) ids ([str]): Vectors to delete.. [optional] # noqa: E501 delete_all (bool): This indicates that all vectors in the index namespace should be deleted.. [optional] if omitted the server will use the default value of False # noqa: E501 namespace (str): The namespace to delete vectors from, if applicable.. [optional] # noqa: E501 filter ({str: (bool, dict, float, int, list, str, none_type)}): If specified, the metadata filter here will be used to select the vectors to delete. This is mutually exclusive with specifying ids to delete in the ids param or using delete_all=True. See Filter with metadata. Serverless indexes do not support delete by metadata. Instead, you can use the list operation to fetch the vector IDs based on their common ID prefix and then delete the records by ID.. [optional] # noqa: E501

allowed_values = {}
validations = {('ids',): {}}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'ids': 'ids', 'delete_all': 'deleteAll', 'namespace': 'namespace', 'filter': 'filter'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class DescribeIndexStatsRequest(pinecone.core.openapi.shared.model_utils.ModelNormal):
 33class DescribeIndexStatsRequest(ModelNormal):
 34    """NOTE: This class is auto generated by OpenAPI Generator.
 35    Ref: https://openapi-generator.tech
 36
 37    Do not edit the class manually.
 38
 39    Attributes:
 40      allowed_values (dict): The key is the tuple path to the attribute
 41          and the for var_name this is (var_name,). The value is a dict
 42          with a capitalized key describing the allowed value and an allowed
 43          value. These dicts store the allowed enum values.
 44      attribute_map (dict): The key is attribute name
 45          and the value is json key in definition.
 46      discriminator_value_class_map (dict): A dict to go from the discriminator
 47          variable value to the discriminator class name.
 48      validations (dict): The key is the tuple path to the attribute
 49          and the for var_name this is (var_name,). The value is a dict
 50          that stores validations for max_length, min_length, max_items,
 51          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 52          inclusive_minimum, and regex.
 53      additional_properties_type (tuple): A tuple of classes accepted
 54          as additional properties values.
 55    """
 56
 57    allowed_values = {}
 58
 59    validations = {}
 60
 61    @cached_property
 62    def additional_properties_type():
 63        """
 64        This must be a method because a model may have properties that are
 65        of type self, this must run after the class is loaded
 66        """
 67        return (
 68            bool,
 69            dict,
 70            float,
 71            int,
 72            list,
 73            str,
 74            none_type,
 75        )  # noqa: E501
 76
 77    _nullable = False
 78
 79    @cached_property
 80    def openapi_types():
 81        """
 82        This must be a method because a model may have properties that are
 83        of type self, this must run after the class is loaded
 84
 85        Returns
 86            openapi_types (dict): The key is attribute name
 87                and the value is attribute type.
 88        """
 89        return {
 90            "filter": ({str: (bool, dict, float, int, list, str, none_type)},),  # noqa: E501
 91        }
 92
 93    @cached_property
 94    def discriminator():
 95        return None
 96
 97    attribute_map = {
 98        "filter": "filter",  # noqa: E501
 99    }
100
101    read_only_vars = {}
102
103    _composed_schemas = {}
104
105    @classmethod
106    @convert_js_args_to_python_args
107    def _from_openapi_data(cls, *args, **kwargs):  # noqa: E501
108        """DescribeIndexStatsRequest - a model defined in OpenAPI
109
110        Keyword Args:
111            _check_type (bool): if True, values for parameters in openapi_types
112                                will be type checked and a TypeError will be
113                                raised if the wrong type is input.
114                                Defaults to True
115            _path_to_item (tuple/list): This is a list of keys or values to
116                                drill down to the model in received_data
117                                when deserializing a response
118            _spec_property_naming (bool): True if the variable names in the input data
119                                are serialized names, as specified in the OpenAPI document.
120                                False if the variable names in the input data
121                                are pythonic names, e.g. snake case (default)
122            _configuration (Configuration): the instance to use when
123                                deserializing a file_type parameter.
124                                If passed, type conversion is attempted
125                                If omitted no type conversion is done.
126            _visited_composed_classes (tuple): This stores a tuple of
127                                classes that we have traveled through so that
128                                if we see that class again we will not use its
129                                discriminator again.
130                                When traveling through a discriminator, the
131                                composed schema that is
132                                is traveled through is added to this set.
133                                For example if Animal has a discriminator
134                                petType and we pass in "Dog", and the class Dog
135                                allOf includes Animal, we move through Animal
136                                once using the discriminator, and pick Dog.
137                                Then in Dog, we will make an instance of the
138                                Animal class but this time we won't travel
139                                through its discriminator because we passed in
140                                _visited_composed_classes = (Animal,)
141            filter ({str: (bool, dict, float, int, list, str, none_type)}): If this parameter is present, the operation only returns statistics for vectors that satisfy the filter. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata).  Serverless indexes do not support filtering `describe_index_stats` by metadata.. [optional]  # noqa: E501
142        """
143
144        _check_type = kwargs.pop("_check_type", True)
145        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
146        _path_to_item = kwargs.pop("_path_to_item", ())
147        _configuration = kwargs.pop("_configuration", None)
148        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
149
150        self = super(OpenApiModel, cls).__new__(cls)
151
152        if args:
153            raise PineconeApiTypeError(
154                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
155                % (
156                    args,
157                    self.__class__.__name__,
158                ),
159                path_to_item=_path_to_item,
160                valid_classes=(self.__class__,),
161            )
162
163        self._data_store = {}
164        self._check_type = _check_type
165        self._spec_property_naming = _spec_property_naming
166        self._path_to_item = _path_to_item
167        self._configuration = _configuration
168        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
169
170        for var_name, var_value in kwargs.items():
171            if (
172                var_name not in self.attribute_map
173                and self._configuration is not None
174                and self._configuration.discard_unknown_keys
175                and self.additional_properties_type is None
176            ):
177                # discard variable.
178                continue
179            setattr(self, var_name, var_value)
180        return self
181
182    required_properties = set(
183        [
184            "_data_store",
185            "_check_type",
186            "_spec_property_naming",
187            "_path_to_item",
188            "_configuration",
189            "_visited_composed_classes",
190        ]
191    )
192
193    @convert_js_args_to_python_args
194    def __init__(self, *args, **kwargs):  # noqa: E501
195        """DescribeIndexStatsRequest - a model defined in OpenAPI
196
197        Keyword Args:
198            _check_type (bool): if True, values for parameters in openapi_types
199                                will be type checked and a TypeError will be
200                                raised if the wrong type is input.
201                                Defaults to True
202            _path_to_item (tuple/list): This is a list of keys or values to
203                                drill down to the model in received_data
204                                when deserializing a response
205            _spec_property_naming (bool): True if the variable names in the input data
206                                are serialized names, as specified in the OpenAPI document.
207                                False if the variable names in the input data
208                                are pythonic names, e.g. snake case (default)
209            _configuration (Configuration): the instance to use when
210                                deserializing a file_type parameter.
211                                If passed, type conversion is attempted
212                                If omitted no type conversion is done.
213            _visited_composed_classes (tuple): This stores a tuple of
214                                classes that we have traveled through so that
215                                if we see that class again we will not use its
216                                discriminator again.
217                                When traveling through a discriminator, the
218                                composed schema that is
219                                is traveled through is added to this set.
220                                For example if Animal has a discriminator
221                                petType and we pass in "Dog", and the class Dog
222                                allOf includes Animal, we move through Animal
223                                once using the discriminator, and pick Dog.
224                                Then in Dog, we will make an instance of the
225                                Animal class but this time we won't travel
226                                through its discriminator because we passed in
227                                _visited_composed_classes = (Animal,)
228            filter ({str: (bool, dict, float, int, list, str, none_type)}): If this parameter is present, the operation only returns statistics for vectors that satisfy the filter. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata).  Serverless indexes do not support filtering `describe_index_stats` by metadata.. [optional]  # noqa: E501
229        """
230
231        _check_type = kwargs.pop("_check_type", True)
232        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
233        _path_to_item = kwargs.pop("_path_to_item", ())
234        _configuration = kwargs.pop("_configuration", None)
235        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
236
237        if args:
238            raise PineconeApiTypeError(
239                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
240                % (
241                    args,
242                    self.__class__.__name__,
243                ),
244                path_to_item=_path_to_item,
245                valid_classes=(self.__class__,),
246            )
247
248        self._data_store = {}
249        self._check_type = _check_type
250        self._spec_property_naming = _spec_property_naming
251        self._path_to_item = _path_to_item
252        self._configuration = _configuration
253        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
254
255        for var_name, var_value in kwargs.items():
256            if (
257                var_name not in self.attribute_map
258                and self._configuration is not None
259                and self._configuration.discard_unknown_keys
260                and self.additional_properties_type is None
261            ):
262                # discard variable.
263                continue
264            setattr(self, var_name, var_value)
265            if var_name in self.read_only_vars:
266                raise PineconeApiAttributeError(
267                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
268                    f"class with read only attributes."
269                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
DescribeIndexStatsRequest(*args, **kwargs)
193    @convert_js_args_to_python_args
194    def __init__(self, *args, **kwargs):  # noqa: E501
195        """DescribeIndexStatsRequest - a model defined in OpenAPI
196
197        Keyword Args:
198            _check_type (bool): if True, values for parameters in openapi_types
199                                will be type checked and a TypeError will be
200                                raised if the wrong type is input.
201                                Defaults to True
202            _path_to_item (tuple/list): This is a list of keys or values to
203                                drill down to the model in received_data
204                                when deserializing a response
205            _spec_property_naming (bool): True if the variable names in the input data
206                                are serialized names, as specified in the OpenAPI document.
207                                False if the variable names in the input data
208                                are pythonic names, e.g. snake case (default)
209            _configuration (Configuration): the instance to use when
210                                deserializing a file_type parameter.
211                                If passed, type conversion is attempted
212                                If omitted no type conversion is done.
213            _visited_composed_classes (tuple): This stores a tuple of
214                                classes that we have traveled through so that
215                                if we see that class again we will not use its
216                                discriminator again.
217                                When traveling through a discriminator, the
218                                composed schema that is
219                                is traveled through is added to this set.
220                                For example if Animal has a discriminator
221                                petType and we pass in "Dog", and the class Dog
222                                allOf includes Animal, we move through Animal
223                                once using the discriminator, and pick Dog.
224                                Then in Dog, we will make an instance of the
225                                Animal class but this time we won't travel
226                                through its discriminator because we passed in
227                                _visited_composed_classes = (Animal,)
228            filter ({str: (bool, dict, float, int, list, str, none_type)}): If this parameter is present, the operation only returns statistics for vectors that satisfy the filter. See [Filter with metadata](https://docs.pinecone.io/guides/data/filter-with-metadata).  Serverless indexes do not support filtering `describe_index_stats` by metadata.. [optional]  # noqa: E501
229        """
230
231        _check_type = kwargs.pop("_check_type", True)
232        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
233        _path_to_item = kwargs.pop("_path_to_item", ())
234        _configuration = kwargs.pop("_configuration", None)
235        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
236
237        if args:
238            raise PineconeApiTypeError(
239                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
240                % (
241                    args,
242                    self.__class__.__name__,
243                ),
244                path_to_item=_path_to_item,
245                valid_classes=(self.__class__,),
246            )
247
248        self._data_store = {}
249        self._check_type = _check_type
250        self._spec_property_naming = _spec_property_naming
251        self._path_to_item = _path_to_item
252        self._configuration = _configuration
253        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
254
255        for var_name, var_value in kwargs.items():
256            if (
257                var_name not in self.attribute_map
258                and self._configuration is not None
259                and self._configuration.discard_unknown_keys
260                and self.additional_properties_type is None
261            ):
262                # discard variable.
263                continue
264            setattr(self, var_name, var_value)
265            if var_name in self.read_only_vars:
266                raise PineconeApiAttributeError(
267                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
268                    f"class with read only attributes."
269                )

DescribeIndexStatsRequest - a model defined in OpenAPI

Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) filter ({str: (bool, dict, float, int, list, str, none_type)}): If this parameter is present, the operation only returns statistics for vectors that satisfy the filter. See Filter with metadata. Serverless indexes do not support filtering describe_index_stats by metadata.. [optional] # noqa: E501

allowed_values = {}
validations = {}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'filter': 'filter'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute
class SparseValues(pinecone.core.openapi.shared.model_utils.ModelNormal):
 33class SparseValues(ModelNormal):
 34    """NOTE: This class is auto generated by OpenAPI Generator.
 35    Ref: https://openapi-generator.tech
 36
 37    Do not edit the class manually.
 38
 39    Attributes:
 40      allowed_values (dict): The key is the tuple path to the attribute
 41          and the for var_name this is (var_name,). The value is a dict
 42          with a capitalized key describing the allowed value and an allowed
 43          value. These dicts store the allowed enum values.
 44      attribute_map (dict): The key is attribute name
 45          and the value is json key in definition.
 46      discriminator_value_class_map (dict): A dict to go from the discriminator
 47          variable value to the discriminator class name.
 48      validations (dict): The key is the tuple path to the attribute
 49          and the for var_name this is (var_name,). The value is a dict
 50          that stores validations for max_length, min_length, max_items,
 51          min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum,
 52          inclusive_minimum, and regex.
 53      additional_properties_type (tuple): A tuple of classes accepted
 54          as additional properties values.
 55    """
 56
 57    allowed_values = {}
 58
 59    validations = {
 60        ("indices",): {},
 61        ("values",): {},
 62    }
 63
 64    @cached_property
 65    def additional_properties_type():
 66        """
 67        This must be a method because a model may have properties that are
 68        of type self, this must run after the class is loaded
 69        """
 70        return (
 71            bool,
 72            dict,
 73            float,
 74            int,
 75            list,
 76            str,
 77            none_type,
 78        )  # noqa: E501
 79
 80    _nullable = False
 81
 82    @cached_property
 83    def openapi_types():
 84        """
 85        This must be a method because a model may have properties that are
 86        of type self, this must run after the class is loaded
 87
 88        Returns
 89            openapi_types (dict): The key is attribute name
 90                and the value is attribute type.
 91        """
 92        return {
 93            "indices": ([int],),  # noqa: E501
 94            "values": ([float],),  # noqa: E501
 95        }
 96
 97    @cached_property
 98    def discriminator():
 99        return None
100
101    attribute_map = {
102        "indices": "indices",  # noqa: E501
103        "values": "values",  # noqa: E501
104    }
105
106    read_only_vars = {}
107
108    _composed_schemas = {}
109
110    @classmethod
111    @convert_js_args_to_python_args
112    def _from_openapi_data(cls, indices, values, *args, **kwargs):  # noqa: E501
113        """SparseValues - a model defined in OpenAPI
114
115        Args:
116            indices ([int]): The indices of the sparse data.
117            values ([float]): The corresponding values of the sparse data, which must be with the same length as the indices.
118
119        Keyword Args:
120            _check_type (bool): if True, values for parameters in openapi_types
121                                will be type checked and a TypeError will be
122                                raised if the wrong type is input.
123                                Defaults to True
124            _path_to_item (tuple/list): This is a list of keys or values to
125                                drill down to the model in received_data
126                                when deserializing a response
127            _spec_property_naming (bool): True if the variable names in the input data
128                                are serialized names, as specified in the OpenAPI document.
129                                False if the variable names in the input data
130                                are pythonic names, e.g. snake case (default)
131            _configuration (Configuration): the instance to use when
132                                deserializing a file_type parameter.
133                                If passed, type conversion is attempted
134                                If omitted no type conversion is done.
135            _visited_composed_classes (tuple): This stores a tuple of
136                                classes that we have traveled through so that
137                                if we see that class again we will not use its
138                                discriminator again.
139                                When traveling through a discriminator, the
140                                composed schema that is
141                                is traveled through is added to this set.
142                                For example if Animal has a discriminator
143                                petType and we pass in "Dog", and the class Dog
144                                allOf includes Animal, we move through Animal
145                                once using the discriminator, and pick Dog.
146                                Then in Dog, we will make an instance of the
147                                Animal class but this time we won't travel
148                                through its discriminator because we passed in
149                                _visited_composed_classes = (Animal,)
150        """
151
152        _check_type = kwargs.pop("_check_type", True)
153        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
154        _path_to_item = kwargs.pop("_path_to_item", ())
155        _configuration = kwargs.pop("_configuration", None)
156        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
157
158        self = super(OpenApiModel, cls).__new__(cls)
159
160        if args:
161            raise PineconeApiTypeError(
162                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
163                % (
164                    args,
165                    self.__class__.__name__,
166                ),
167                path_to_item=_path_to_item,
168                valid_classes=(self.__class__,),
169            )
170
171        self._data_store = {}
172        self._check_type = _check_type
173        self._spec_property_naming = _spec_property_naming
174        self._path_to_item = _path_to_item
175        self._configuration = _configuration
176        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
177
178        self.indices = indices
179        self.values = values
180        for var_name, var_value in kwargs.items():
181            if (
182                var_name not in self.attribute_map
183                and self._configuration is not None
184                and self._configuration.discard_unknown_keys
185                and self.additional_properties_type is None
186            ):
187                # discard variable.
188                continue
189            setattr(self, var_name, var_value)
190        return self
191
192    required_properties = set(
193        [
194            "_data_store",
195            "_check_type",
196            "_spec_property_naming",
197            "_path_to_item",
198            "_configuration",
199            "_visited_composed_classes",
200        ]
201    )
202
203    @convert_js_args_to_python_args
204    def __init__(self, indices, values, *args, **kwargs):  # noqa: E501
205        """SparseValues - a model defined in OpenAPI
206
207        Args:
208            indices ([int]): The indices of the sparse data.
209            values ([float]): The corresponding values of the sparse data, which must be with the same length as the indices.
210
211        Keyword Args:
212            _check_type (bool): if True, values for parameters in openapi_types
213                                will be type checked and a TypeError will be
214                                raised if the wrong type is input.
215                                Defaults to True
216            _path_to_item (tuple/list): This is a list of keys or values to
217                                drill down to the model in received_data
218                                when deserializing a response
219            _spec_property_naming (bool): True if the variable names in the input data
220                                are serialized names, as specified in the OpenAPI document.
221                                False if the variable names in the input data
222                                are pythonic names, e.g. snake case (default)
223            _configuration (Configuration): the instance to use when
224                                deserializing a file_type parameter.
225                                If passed, type conversion is attempted
226                                If omitted no type conversion is done.
227            _visited_composed_classes (tuple): This stores a tuple of
228                                classes that we have traveled through so that
229                                if we see that class again we will not use its
230                                discriminator again.
231                                When traveling through a discriminator, the
232                                composed schema that is
233                                is traveled through is added to this set.
234                                For example if Animal has a discriminator
235                                petType and we pass in "Dog", and the class Dog
236                                allOf includes Animal, we move through Animal
237                                once using the discriminator, and pick Dog.
238                                Then in Dog, we will make an instance of the
239                                Animal class but this time we won't travel
240                                through its discriminator because we passed in
241                                _visited_composed_classes = (Animal,)
242        """
243
244        _check_type = kwargs.pop("_check_type", True)
245        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
246        _path_to_item = kwargs.pop("_path_to_item", ())
247        _configuration = kwargs.pop("_configuration", None)
248        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
249
250        if args:
251            raise PineconeApiTypeError(
252                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
253                % (
254                    args,
255                    self.__class__.__name__,
256                ),
257                path_to_item=_path_to_item,
258                valid_classes=(self.__class__,),
259            )
260
261        self._data_store = {}
262        self._check_type = _check_type
263        self._spec_property_naming = _spec_property_naming
264        self._path_to_item = _path_to_item
265        self._configuration = _configuration
266        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
267
268        self.indices = indices
269        self.values = values
270        for var_name, var_value in kwargs.items():
271            if (
272                var_name not in self.attribute_map
273                and self._configuration is not None
274                and self._configuration.discard_unknown_keys
275                and self.additional_properties_type is None
276            ):
277                # discard variable.
278                continue
279            setattr(self, var_name, var_value)
280            if var_name in self.read_only_vars:
281                raise PineconeApiAttributeError(
282                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
283                    f"class with read only attributes."
284                )

NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech

Do not edit the class manually.

Attributes:
  • allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values.
  • attribute_map (dict): The key is attribute name and the value is json key in definition.
  • discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name.
  • validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex.
  • additional_properties_type (tuple): A tuple of classes accepted as additional properties values.
@convert_js_args_to_python_args
SparseValues(indices, values, *args, **kwargs)
203    @convert_js_args_to_python_args
204    def __init__(self, indices, values, *args, **kwargs):  # noqa: E501
205        """SparseValues - a model defined in OpenAPI
206
207        Args:
208            indices ([int]): The indices of the sparse data.
209            values ([float]): The corresponding values of the sparse data, which must be with the same length as the indices.
210
211        Keyword Args:
212            _check_type (bool): if True, values for parameters in openapi_types
213                                will be type checked and a TypeError will be
214                                raised if the wrong type is input.
215                                Defaults to True
216            _path_to_item (tuple/list): This is a list of keys or values to
217                                drill down to the model in received_data
218                                when deserializing a response
219            _spec_property_naming (bool): True if the variable names in the input data
220                                are serialized names, as specified in the OpenAPI document.
221                                False if the variable names in the input data
222                                are pythonic names, e.g. snake case (default)
223            _configuration (Configuration): the instance to use when
224                                deserializing a file_type parameter.
225                                If passed, type conversion is attempted
226                                If omitted no type conversion is done.
227            _visited_composed_classes (tuple): This stores a tuple of
228                                classes that we have traveled through so that
229                                if we see that class again we will not use its
230                                discriminator again.
231                                When traveling through a discriminator, the
232                                composed schema that is
233                                is traveled through is added to this set.
234                                For example if Animal has a discriminator
235                                petType and we pass in "Dog", and the class Dog
236                                allOf includes Animal, we move through Animal
237                                once using the discriminator, and pick Dog.
238                                Then in Dog, we will make an instance of the
239                                Animal class but this time we won't travel
240                                through its discriminator because we passed in
241                                _visited_composed_classes = (Animal,)
242        """
243
244        _check_type = kwargs.pop("_check_type", True)
245        _spec_property_naming = kwargs.pop("_spec_property_naming", False)
246        _path_to_item = kwargs.pop("_path_to_item", ())
247        _configuration = kwargs.pop("_configuration", None)
248        _visited_composed_classes = kwargs.pop("_visited_composed_classes", ())
249
250        if args:
251            raise PineconeApiTypeError(
252                "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments."
253                % (
254                    args,
255                    self.__class__.__name__,
256                ),
257                path_to_item=_path_to_item,
258                valid_classes=(self.__class__,),
259            )
260
261        self._data_store = {}
262        self._check_type = _check_type
263        self._spec_property_naming = _spec_property_naming
264        self._path_to_item = _path_to_item
265        self._configuration = _configuration
266        self._visited_composed_classes = _visited_composed_classes + (self.__class__,)
267
268        self.indices = indices
269        self.values = values
270        for var_name, var_value in kwargs.items():
271            if (
272                var_name not in self.attribute_map
273                and self._configuration is not None
274                and self._configuration.discard_unknown_keys
275                and self.additional_properties_type is None
276            ):
277                # discard variable.
278                continue
279            setattr(self, var_name, var_value)
280            if var_name in self.read_only_vars:
281                raise PineconeApiAttributeError(
282                    f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate "
283                    f"class with read only attributes."
284                )

SparseValues - a model defined in OpenAPI

Arguments:
  • indices ([int]): The indices of the sparse data.
  • values ([float]): The corresponding values of the sparse data, which must be with the same length as the indices.
Keyword Args:

_check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,)

allowed_values = {}
validations = {('indices',): {}, ('values',): {}}
def additional_properties_type(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

def openapi_types(unknown):

This must be a method because a model may have properties that are of type self, this must run after the class is loaded

Returns openapi_types (dict): The key is attribute name and the value is attribute type.

def discriminator(unknown):
attribute_map = {'indices': 'indices', 'values': 'values'}
read_only_vars = {}
required_properties = {'_data_store', '_visited_composed_classes', '_spec_property_naming', '_path_to_item', '_check_type', '_configuration'}
indices
values
Inherited Members
pinecone.core.openapi.shared.model_utils.ModelNormal
get
to_dict
to_str
pinecone.core.openapi.shared.model_utils.OpenApiModel
set_attribute